9. ¹/₃(x + 6) = 8
¹/₃(x) + ¹/₃(6) = 8
¹/₃x + 2 = 8
<u> - 2 - 2</u>
3 · ¹/₃x = 6 · 3
x = 18
15. ¹/₅(x + 10) = 6
¹/₅(x) + ¹/₅(10) = 6
¹/₅x + 2 = 6
<u> - 2 - 2</u>
5 · ¹/₅x = 4 · 5
x = 20
20. ¹/₈(24x + 32) = 10
¹/₈(24x) + ¹/₈(32) = 10
3x + 4 = 10
<u> - 4 - 4</u>
<u>3x</u> = <u>6</u>
3 3
x = 2
32. 5 - ¹/₂(x - 6) = 4
5 - ¹/₂(x) - ¹/₂(-6) = 4
5 - ¹/₂x + 3 = 4
5 + 3 - ¹/₂x = 4
8 - ¹/₂x = 4
<u>- 8 - 8</u>
-2 · (-¹/₂x) = -4 · (-2)
x = 8
33. ²/₃(3x - 6) = 3
²/₃(3x) - ²/₃(6) = 3
2x - 4 = 3
<u> + 4 + 4</u>
<u>2x</u> = <u>7</u>
2 2
x = 3¹/₂
F(g(2))
g(2)=2^2+1=4+1=5
f(5)=5-3=2
f(g(2))=2
<span>The rectangle with the largest area with a given perimeter will be a square - so the sides will be equal. So we need to find length of side, L, such that 4*L=168.
L = 168/4
L=42.
So the dimensions of the rectangle that maximizes the area with a perimiter of 168 feet are: 42 feet by 24 feet.</span>
Answer:
If a is 1.. we substitute one in every a in g(a)
4 * 1 + 16
4+ 16 = 20
g(a)= 20
f(20)
-16 + 20 = 4
and 4/4 = 1
so f (g (a)) = a
Step-by-step explanation:
The answer for the algebraic expression is 5-6t