The equilibrium constant for this reaction at 350°C is D. 282.
<h3>Equilibrium constant</h3>
A dynamic chemical system approaches chemical equilibrium constant when enough time has passed and its composition no longer exhibits any discernible propensity to change further. The equilibrium constant of a chemical reaction is the value of its reaction quotient in this condition. The equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture for a specific set of reaction conditions. Understanding equilibrium constants is crucial for comprehending many chemical systems as well as biological processes like the transport of oxygen by hemoglobin in the blood and the maintenance of acid-base homeostasis in the human body. There are many different kinds of equilibrium constants, including stability constants, formation constants, binding constants, association constants, and dissociation constants.
Learn more about equilibrium constant here:
brainly.com/question/10038290
#SPJ1
A mixture of 0.600 mol of bromine and 1.600 mol of iodine is placed into a rigid 1.000-L container at 350°C.
Br2(g) + I2(g) ↔ 2IBr(g)
When the mixture has come to equilibrium, the concentration of iodine monobromide is
1.190 M. What is the equilibrium constant for this reaction at 350°C? Show step-by step explanation.
A) 3.55 × 10^3
B) 1.24
C) 1.47
D) 282
E) 325
Question:
Which of the following statements correctly describe(s) the driving forces for diffusion of Na+ and K+ ions through their respective channels? Select all that apply.
A)The diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the plasma membrane.
B)The diffusion of Na+ ions into the cell is impeded by the electrical gradient across the plasma membrane.
C)The diffusion of K+ ions out of the cell is impeded by the K+ concentration gradient across the plasma membrane.
D)The diffusion of K+ ions out of the cell is impeded by the electrical gradient across the plasma membrane. The electrochemical gradient is larger for Na+ than for K+.
Answer:
"The concentration gradient and the electro-chemical gradient" describes the driving forces for diffusion of Na+ and K+ ions through their respective channels
Explanation:
The Na ions diffusion inside the cell is facilitated by the concentration gradient of the Na ions which is present across the plasma membrane. Hence, the diffusion of the K ions which is present outside the cell and will be impeded due to the electrical gradient which is present near the plasma membrane. Thus, the electro-chemical gradient is greater as compared to the Na ion than that of the K ion.
Answer:this case, the mass is 2.0g, the specific heat capacity of water is 4.18J/g/K, and the change in temperature is 5.0°C=5K , therefore the energy needed to raise it is: 5×2×4.18=41.8J
Explanation:
54. fluorine
55. oxygen
56. they have the same number of protons
57. nucleus 3
Explanation:
54. The element represented by the nucleus 1 have 9 protons and 9 neutrons. The atomic number of the element is equal to the number of protons = 9, so the element is fluorine.
55. The element represented by the nucleus 2 have 8 protons and 10 neutrons. The atomic number of the element is equal to the number of protons = 8, so the element is oxygen.
56. nucleus 2 contains 8 protons and 10 neutrons
nucleus 4 contains 8 protons and 11 neutrons.
The atoms that have the same number of protons but different number of neutrons are called isotopes.
57. nucleus 3 have 10 protons and 10 neutrons and correspond to neon. Neon have 10 electrons (equal to the number of protons) and have the electronic configuration 1s² 2s² 2p⁸. Because all the electrons shells are filled with electrons, neon have a stable electron configuration.
Learn more about:
subatomic particles
brainly.com/question/4800027
#learnwithBrainly