Answer:
104.969 amu.
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 107.977 amu
Abundance (A%) = 0.1620%
Isotope B:
Mass of B = 106.976 amu
Abundance (B%) = 1.568%
Isotope C:
Mass of C = 105.974 amu
Abundance (C%) = 47.14%
Isotope D:
Mass of D = 103.973 amu
Abundance (D%) = 51.13%
Average atomic mass =?
The average atomic mass of the element can be obtained as follow:
Average atomic mass = [(Mass of A × A%) /100] + [(Mass of B × B%) /100] + [(Mass of C × C%) /100] + [(Mass of D × D%) /100]
Average atomic mass = [(107.977 × 0.1620)/100] + [(106.976 × 1.568)/100] + [(105.974 × 47.14)/100] + [(103.973 × 51.13)/100]
= 0.175 + 1.677 + 49.956 + 53.161
= 104.969 amu
Therefore, the average atomic mass of the element is 104.969 amu.
From the information presented in the question, the number of molecules present of water present is obtained 2.41 × 10^21 molecules.
From the information we have;
Volume of the damp air = 1 L
Pressure of the damp air = 741.0 torr or 0.975 atm
Temperature of the gas = 20 oC + 273 = 293 K
R = 0.082 atm LK-1mol-1
Number of moles = ?
n =PV/RT
n = 0.975 × 1/0.082 × 293
n = 0.041 moles
Volume of water vapor = 1 L
Temperature of water = -10 oC + 273 = 263 K
Pressure of the gas = 607.1 torr or 0.799 atm
R = 0.082 atm LK-1mol-1
n= PV/RT
n = 0.799 × 1/ 0.082 × 263
n = 0.037 moles
Number of moles of water = 0.041 moles - 0.037 moles = 0.004 moles
If 1 mole = 6.02 × 10^23 molecules
0.004 moles = 0.004 moles × 6.02 × 10^23 molecules/1 mole
= 2.41 × 10^21 molecules
Learn more: brainly.com/question/2510654
Given the concentration of aniline hydrochloride is ![2.0 *10^{-4} M](https://tex.z-dn.net/?f=2.0%20%2A10%5E%7B-4%7D%20M)
Aniline hydrochloride is the conjugate acid of aniline a weak base.
pH can be calculated from
anilinium ion the conjugate acid of aniline.
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
Answer: D, splitting water into hydrogen and oxygen is a chemical change.