Answer:it’s abc it’s just science you know
Explanation:
Answer:
A
Explanation:
Because the amount of electrons in the outer shell can be a maximum of 8
Hope this helps
Answer:
igneous rock CAN become sedimentary rock through a process called ROCK CYCLE.
Explanation:
Rocks can be defined as solid structures of minerals that are formed naturally over a period of time. They are grouped into three main types which includes the following:
- igneous rock
- sedimentary rocks and
- metamorphic rocks.
Rocks are capable of transforming from one type to another through a process known as rock cycle. There are two forces that brings about this process which includes:
- The internal force : this is the Earth’s internal heat engine, which moves material around in the core and the mantle and leads to slow but significant changes within the crust.
- The external force: this is the the hydrological cycle, which is the movement of water, ice, and air at the surface, and is powered by the sun.
Molten magma cools to form either extrusive igneous rock or intrusive igneous rock. With time they undergo weathering, eroded, transported, and then deposited as sediments which are being compressed and cemented into SEDIMENTARY ROCKS. Again through the above mentioned forces, different kinds of rocks are either uplifted, to be re-eroded, or buried deeper within the crust where they are heated up, squeezed, and changed into METAMORPHIC ROCK.
Therefore the material in this sedimentary rock found in Rhombus planet used to be in igneous rock deep in Rhombus's interior due to continuous rock cycling on the planet. I hope this helps, thanks.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.