Answer:
Here
Explanation:
Chemists need the mole concept to bridge the gap between the microscopic world of atoms to the macroscopic world of humans. As you know, the molecular level consists of particles that are invisible to us.
If the element has a charge of +2 it has lost two electrons giving it an overall positive charge making it a cation. In order to find the number of electrons, take the elements atomic number and subtract two since it lost two electrons
Answer:
660kcal
Explanation:
The question is missing the concentration of the glucose solution. Standard glucose concentration for IV solution is 5% or 5g of glucose every 100mL of solution.
We need to determine how many grams of glucose are there inside the solution. The number of glucose in 3.3L solution will be:
3.3L * (1000mL / L) * (5g/100mL)= 165 g.
If glucose will give 4kcal/ g, then the total calories 165g glucose give will be: 165g * 4kcal/ g= 660kcal.
Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:

2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.