Answer: To know whether a radical expression is in simplest form or not you should put the numbers and letters inside the radical in terms of prime factors. Then, the radical expression is in the simplest form if all the numbers and letters inside the radical are prime factors with a power less than the index of the radical
Explanation:
Any prime factor raised to a power greater than the index of the root can be simplified and any factor raised to a power less than the index of the root cannot be simplified
For example simplify the following radical in its simplest form:
![\sqrt[5]{3645 a^8b^7c^3}](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B3645%20a%5E8b%5E7c%5E3%7D%20)
1) Factor 3645 in its prime factors: 3645 = 3^6 * 5
2) Since the powr of 3 is 6, and 6 can be divided by the index of the root, 5, you can simplify in this way:
- 6 ÷ 5 = 1 with reminder 1, so 3^1 leaves the radical and 3^1 stays in the radical
3) since the factor 5 has power 1 it can not leave the radical
4) the power of a is 8, then:
8 ÷ 5 = 1 with reminder 3 => a^1 leaves the radical and a^3 stays inside the radical.
5) the power of b is 7, then:
7 ÷ 5 = 1 with reminder 2 => b^1 leaves the radical and b^2 stays inside the radical
6) the power of c is 3. Since 3 is less than 5 (the index of the radical) c^3 stays inside the radical.
7) the expression simplified to its simplest form is
![3ab \sqrt[5]{3.5.a^3b^2c^3}](https://tex.z-dn.net/?f=3ab%20%5Csqrt%5B5%5D%7B3.5.a%5E3b%5E2c%5E3%7D%20)
And you know
it cannot be further simplified because all the numbers and letters inside the radical are prime factors with a power less than the index of the radical.
Did Yu Ever Find The Answer I got the same question??
The answer is D, 2,520 cm³.
100 - 5 is 95. So take the 95 and since you dont know the variable you add the N to the answer.
So the answer is 95n
The equation of the perpendicular line drawn by Leo is
. Option C is the correct answer.
<h3>How to determine the equation of a line?</h3>
A line is drawn perpendicular to the line shown in the image. The perpendicular line passes through the coordinate point (F,G).
The slope of the line from the graph is-

Therefore, the slope of the perpendicular line is
.
Also, it is being given that Leo's line is passing through the coordinate point .
So, the equation of the Leo's line is-

Thus, the equation of the perpendicular line drawn by Leo is .

Learn more about the equation of line here- brainly.com/question/20632687
#SPJ1