Answer and Step-by-step explanation:
The equation would be y = 5x + 75
Now, plug in 1, 2, 6, and 12 for x (which represents the hours) and solve for y (which represents the price).
1 hour - $80
2 hours - $85
6 hours - $105
12 hours - $135
We have been given that Marcus works for 26 hours each week and 48 weeks each year.
Thus in a year he works for
hours.
Now, we have been given that Marcus earns $8.40 per hour.
Therefore, in 1248 hours, he earns

Marcus has to pay tax if he earns more than $10,000. Now we have calculated that he earns $ 10483.2 which is higher than $10,000.
Therefore, Marcus has to to pat tax.
The correct answer is Option C. Ty saved $14 and he earns $9 each week. How many weeks will it take till he has $100?
Further explanation:
Given equation is:
9x+14
We will look at the options one by one
<u>A.9 dogs and 14 dogs and 14 cats cost $100</u>
If this option has to be considered, there will be atleast two variables involved one for the dogs and one for the cats while the given equation only involves one variable so this is not the correct option.
<u>B. Ty wants to buy 14 dogs, but they cost $100, how much more does he need?</u>
The given scenario cannot be linked to given equation if x represents dogs the equation will be something like 14x=100 so this option is not the correct answer.
<u>C. Ty saved $14 and he earns $9 each week. How many weeks will it take till he has $100?</u>
The number 14 will be constant as this is the value which is used only once while ty earns 9 dollar per week if x represents number of weeks then the equation to represent the scenario will be
9x+14=100
The value of x will give us the number of weeks required.
The correct answer is Option C. Ty saved $14 and he earns $9 each week. How many weeks will it take till he has $100?
Keywords: Linear equations, linear inequality
Learn more about linear equations at:
#LearnwithBrainly
First, add 29 on both sides.
42 - x is less than or equal to 0.
Next, add x on both sides.
42 is less than or equal to x.
Hence, the correct answer is (C).