28 is the LCM of 4 and 7 as 4*7 = 28
9514 1404 393
Answer:
- 320 m after 8 seconds
- 5.6 seconds, 10.4 seconds to height of 290 m
Step-by-step explanation:
To find the height at 8 seconds, evaluate the formula for t=8.
S(t) = -5t^2 +80t
S(8) = -5(8^2) +80(8) = -320 +640 = 320
The height of the rocket is 320 meters 8 seconds after takeoff.
__
To find the time to 290 meters height, solve ...
S(t) = 290
290 = -5t^2 +80t
-58 = t^2 -16t . . . . . . . divide by -5
6 = t^2 -16t +64 . . . . . complete the square by adding 64
±√6 = t -8 . . . . . . . . . take the square root
t = 8 ±√6 ≈ {5.551, 10.449}
The rocket is at 290 meters height after 5.6 seconds and again after 10.4 seconds.
Answer: Since it is not a perfect square my answer is the square root of 261 or 16.16 which is rounded to the nearest hundredth.
Step-by-step explanation:
10^2 + b^2 = 19^2
100 + b^2 = 361
-100 -100
b^2 = 261
b=