We are given original equation: 
We need to find the enter and radius of a circle using the completing the square method.
The steps are as following :
Step 1 [original equation]: x^2 − 10x + y^2 + 12y = 20 .
Step 2 [group like terms]: (x^2 − 10x) + (y^2 + 12y) = 20
Step 3 [complete the quadratics]: (x^2 − 10x + 25) + (y^2 + 12y + 36) = 20 + (25 + 36).
Step 4 [simplify the equation]: (x^2 − 10x + 25) + (y^2 + 12y + 36) = 64.
Step 5 [factor each quadratic]: (x − 5)^2 + (y + 6)^2 = 8^2
Step 6 [identify the center and radius]: Center = (5, −6) Radius = 8.
<h3>Step 6 is incorrect.</h3><h3>The center should be (5,-6).</h3><h3> Replace − 5 with + 5 and replace + 6 with − 6.</h3>
Answer:
<u>Identities used:</u>
- <em>1/cosθ = secθ</em>
- <em>1/sinθ = cosecθ</em>
- <em>sinθ/cosθ = tanθ</em>
- <em>cosθ/sinθ = cotθ</em>
- <em>sin²θ + cos²θ = 1</em>
<h3>Question 1 </h3>
- (1 - sinθ)/(1 + sinθ) =
- (1 - sinθ)(1 - sinθ) / (1 - sinθ)(1 + sinθ) =
- (1 - sinθ)² / (1 - sin²θ) =
- (1 - sinθ)² / cos²θ
<u>Square root of it is:</u>
- (1 - sinθ)/ cosθ =
- 1/cosθ - sinθ / cosθ =
- secθ - tanθ
<h3>Question 2 </h3>
<u>The first part without root:</u>
- (1 + cosθ) / (1 - cosθ) =
- (1 + cosθ)(1 + cosθ) / (1 - cosθ)(1 + cosθ)
- (1 + cosθ)² / (1 - cos²θ) =
- (1 + cosθ)² / sin²θ
<u>Its square root is:</u>
- (1 + cosθ) / sinθ =
- 1/sinθ + cosθ/sinθ =
- cosecθ + cotθ
<u>The second part without root:</u>
- (1 - cosθ) / (1 + cosθ) =
- (1 - cosθ)²/ (1 + cosθ)(1 - cosθ) =
- (1 - cosθ)²/ (1 - cos²θ) =
- (1 - cosθ)²/sin²θ
<u>Its square root is:</u>
- (1 - cosθ) / sinθ =
- 1/sinθ - cosθ / sinθ =
- cosecθ - cotθ
<u>Sum of the results:</u>
- cosecθ + cotθ + cosecθ - cotθ =
- 2cosecθ
A rectangular pyramid has a rectangular base and 4 triangular faces.
If you move the decimal from left to right, then you make it either a whole number or a percentage.
1 quart = 2 pints.
This means a 4 pint container is 2 quarts.
To find the price for 1 quart divide the price by 2:
12.04 / 2 = $6.02 per quart.