C. The trend line describes the pattern in the data if one exists. :)
Answer:
1.2
Step-by-step explanation:
Answer:
Markers make up 15% of the inventory.
Step-by-step explanation:
There are 60 total items and 9 of them are markers. 9 is 15% of 60
To check the decay rate, we need to check the variation in y-axis.
Since our interval is
![-2We need to evaluate both function at those limits.At x = -2, we have a value of 4 for both of them, at x = 0 we have 1 for the exponential function and 0 to the quadratic function. Let's call the exponential f(x), and the quadratic g(x).[tex]\begin{gathered} f(-2)=g(-2)=4 \\ f(0)=1 \\ g(0)=0 \end{gathered}](https://tex.z-dn.net/?f=-2We%20need%20to%20evaluate%20both%20function%20at%20those%20limits.%3Cp%3E%3C%2Fp%3E%3Cp%3EAt%20x%20%3D%20-2%2C%20we%20have%20a%20value%20of%204%20for%20both%20of%20them%2C%20at%20x%20%3D%200%20we%20have%201%20for%20the%20exponential%20function%20and%200%20to%20the%20quadratic%20function.%20Let%27s%20call%20the%20exponential%20f%28x%29%2C%20and%20the%20quadratic%20g%28x%29.%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%5Btex%5D%5Cbegin%7Bgathered%7D%20f%28-2%29%3Dg%28-2%29%3D4%20%5C%5C%20f%280%29%3D1%20%5C%5C%20g%280%29%3D0%20%5Cend%7Bgathered%7D)
To compare the decay rates we need to check the variation on the y-axis of both functions.

Now, we calculate their ratio to find how they compare:

This tell us that the exponential function decays at three-fourths the rate of the quadratic function.
And this is the fourth option.
First you plot in the y-intercept of the equation. To find the y-intercept, substitute 0 into x. -3m will cancel our giving you y=5. x=0, y=5, the first ordered pair is (0,5). Now after you plot in the y-intercept, use your slope, which is -3, to graph the points of the equation. Starting from (0,5), move down 3 spaces on the y-axis (because it’s -3) and you’ll end up at (0,2). Next move over 1 ( all slopes with just a whole number moves on the x-axis 1 since the whole number divided by 1 doesn’t change the slope number) to the right because it’s a negative linear equation so it’ll go downward. After moving right, you’ll get (1,2). Do a couple more points starting from (1,2) then the 3rd point ABD and so on to get 3 or more points to be able to draw a linear line.