1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
Answer:
7.5 L of the 10% and 22.5 L of the 30% acid solution, she should mix.
Explanation:
Let the volume of 10% acid solution used to make the mixture = x L
So, the volume of 30% acid solution used to make the mixture = y L
Total volume of the mixture = <u>x + y = 30 L .................. (1)
</u>
For 10% acid solution:
C₁ = 10% , V₁ = x L
For 30% acid solution :
C₂ = 30% , V₂ = y L
For the resultant solution of sulfuric acid:
C₃ = 25% , V₃ = 30 L
Using
C₁V₁ + C₂V₂ = C₃V₃
10×x + 30×y = 25×30
So,
<u>x + 3y = 75 .................. (2)
</u>
Solving 1 and 2 we get,
<u>x = 7.5 L
</u>
<u>y = 22.5 L</u>
This problem is to use the Claussius-Clapeyron Equation, which is:
ln [p2 / p1] = ΔH/R [1/T2 - 1/T1]
Where p2 and p1 and vapor pressure at estates 2 and 1
ΔH is the enthalpy of vaporization
R is the universal constant of gases = 8.314 J / mol*K
T2 and T1 are the temperatures at the estates 2 and 1.
The normal boiling point => 1 atm (the pressure of the atmosphere at sea level) = 101,325 kPa
Then p2 = 101.325 kPa
T2 = ?
p1 = 54.0 kPa
T1 = 57.8 °C + 273.15K = 330.95 K
ΔH = 33.05 kJ/mol = 33,050 J/mol
=> ln [101.325/54.0] = [ (33,050 J/mol) / (8.314 J/mol*K) ] * [1/x - 1/330.95]
=> 0.629349 = 3975.22 [1/x - 1/330.95] = > 1/x = 0.000157 + 1/330.95 = 0.003179
=> x = 314.6 K => 314.6 - 273.15 = 41.5°C
Answer: 41.5 °C
Answer:
Carbon - 13
Explanation:
For most of the elements other than that of hydrogen, the isotopes are named for the mass number.
Example : Carbon atoms with 6 neutrons have mass number of 12 ( as
), so they are known as carbon-12.
Given that:
Protons = 6
Neutrons = 7
Mass = 6 + 7 = 13
So the name is Carbon - 13 . The symbol is 
mee÷eeeeeeer tooooo ooooooooooooooo