The conclusion best supported by the data can either be high temperature, low temperature, and normal temperature. Since there are diverse substances included in the chart, It is expected to also have diverse temperatures.
Types of Bonds can be predicted by calculating the
difference in electronegativity.
If, Electronegativity difference is,
Less
than 0.4 then it is Non Polar Covalent Bond
Between 0.4 and 1.7 then it is Polar Covalent Bond
Greater than 1.7 then it is Ionic
For Br₂;
E.N of Bromine = 2.96
E.N of Bromine = 2.96
________
E.N Difference
0.00 (Non Polar Covalent Bond)
For MgS;
E.N of Sulfur = 2.58
E.N of Magnesium = 1.31
________
E.N Difference 1.27 (Ionic Bond)
For SO₂;
E.N of Oxygen = 3.44
E.N of Sulfur = 2.58
________
E.N Difference 0.86 (Polar Covalent Bond)
For KF;
E.N of Fluorine = 3.98
E.N of Potassium = 0.82
________
E.N Difference 3.16 (Ionic Bond)
Result: The Bonds in Br₂ and SO₂ are Covalent in Nature.
answer: A homogeneous mixture has the same uniform appearance and composition throughout. Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly different substances or phases.
I'm pretty sure its momentum
To determine the relative atomic mass of thallium, we multiply the molar mass of the isotopes to their corresponding relative abundance. The molecular percentages should sum up to 1. In this case, we multiply 203 by 0.295 and 205 by 0.705 and add the answers of the two. The final atomic mass is 204.41 g/mol.