Answer:
4
Step-by-step explanation:
Answer:
(-2, 15), (-1, 11), (0, 7), (1, 3), (2, -1)
Step-by-step explanation:
so i just took possible x values and plugged them into the equation, and from there you can solve for y.
The trigonometric function gives the ratio of different sides of a right-angle triangle. The given problems can be solved as given below.
<h3>What are Trigonometric functions?</h3>
The trigonometric function gives the ratio of different sides of a right-angle triangle.

where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
1st.) x = 5 /Sin(30°)
x = 10
!) sin(45°) = 4/x
x = 4/sin(45°)
x = 4√2
I) Cos(45°) = √3 / x
x = √3 / Cos(45°)
x = √6
E) Tan(60°) = 3√3 / x
x = 3√3 / 3
W) For isosceles right-triangle, the angle made by the legs and the hypotenuse is always 45°.
x = 45°
N) x² + x² = (7√2)²
x = 7
V) Tan(60°) = 7 / x
x = 7√3/3
K) x² + x² = (9)²
x = 9/√2
Y) Sin(60°) = 7√3/x
x = 14
M) Sin(30°) = x/11
x = 11/2
T) Sin(45°) = x/√10
x = √5
A) x + 2x + 90° = 180°
x = 30°
O) Sin(45°) = √2 / x
x = 2
R) Tan(30°) = x / 4
x = 4/√3 = 4√3 / 3
S) Sin(60°) = x / (10/3)
x = 5√3 / 3
Learn more about Trigonometric functions:
brainly.com/question/6904750
#SPJ1
Answer:
-x¹⁴ / 5040
-½ < x < ½
Step-by-step explanation:
f(x) = e^(-x²)
The Taylor series for eˣ centered at 0 is:
eˣ = ∑ (1/n!) xⁿ
Substitute -x²:
e^(-x²) = ∑ (1/n!) (-x²)ⁿ
e^(-x²) = ∑ (1/n!) (-1)ⁿ x²ⁿ
The 14th degree term occurs at n=7.
(1/7!) (-1)⁷ x¹⁴
-x¹⁴ / 5040
ln(1 + x) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ xⁿ / n
If we substitute 4x²:
ln(1 + 4x²) = ∑ₙ₌₁°° (-1)ⁿ⁺¹ (4x²)ⁿ / n
Using ratio test:
lim(n→∞)│aₙ₊₁ / aₙ│< 1
lim(n→∞)│[(-1)ⁿ⁺² (4x²)ⁿ⁺¹ / (n+1)] / [(-1)ⁿ⁺¹ (4x²)ⁿ / n]│< 1
lim(n→∞)│-1 (4x²) n / (n+1)│< 1
4x² < 1
x² < ¼
-½ < x < ½