1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
2 years ago
5

Determine the normal stress acting perpendicular to the seam, when the tube is subjected to an axial compressive force of 200

Engineering
1 answer:
astraxan [27]2 years ago
8 0

Normal Stress = 200 units / Area of the tube face

Normal Stress is equal to the force applied perpendicular to the surface area divided by the surface area. This force is also known as the axial load.

Therefore, we get the following formula:

Normal Stress = 200 units of Force / Area of the tube face

You might be interested in
If 9 + 10 = 21, then what is 10 + 10?
Katen [24]
The answer would be 23 because the engines in a horse is a amount of 9 engines in 69 cars
6 0
2 years ago
Read 2 more answers
I’m bored let’s text
Nuetrik [128]

Answer:

<em>hi</em><em> </em><em>sa</em><em>m</em><em>e</em><em> </em><em>here</em><em>.</em><em> </em><em>hru</em><em> </em><em>btw</em>

<em>안녕하세요 모두가 잘되기를 바랍니다. 안전 유지</em>

3 0
3 years ago
Read 2 more answers
You want to improve your grades so that you make all A's next 6 weeks. List examples of quantitative and qualitative data you sh
Naddika [18.5K]

Explanation:

z3d33sxurljt 36f

3fभथठभदाफमदखज्ञफादफज्ञादफज्ञिलफ इऋबिअऋब

6 0
3 years ago
Imagine the reaction A + B LaTeX: \Longleftrightarrow⟺ C + D proceeds at room temperature (25 °C) and is determined to have a re
Wittaler [7]

Answer:

0.2 kcal/mol is the value of \Delta G for this reaction.

Explanation:

The formula used for is:

\Delta G_{rxn}=\Delta G^o+RT\ln Q

\Delta G^o=-RT\ln K

where,

\Delta G_{rxn} = Gibbs free energy for the reaction

\Delta G_^o =  standard Gibbs free energy  

R =Universal  gas constant

T = temperature

Q = reaction quotient

k = Equilibrium constant

We have :

Reaction quotient of the reaction = Q = 46

Equilibrium constant of reaction = K = 35

Temperature of reaction = T = 25°C = 25 + 273 K = 298 K

R = 1.987 cal/K mol

\Delta G_{rxn}=-RT\ln K+RT\ln Q

=-1.987 cal/K mol\times 298 K\ln [35]+1.987 cal/K mol\times 298K\times \ln [46]

=-2,105.21 cal/mol+2,267.04 cal/mol=161.82 cal/mol=0.16182 kcal/mol\approx 0.2 kcal/mol

1 cal = 0.001 kcal

0.2 kcal/mol is the value of \Delta G for this reaction.

5 0
3 years ago
Air in a large tank at 300C and 400kPa, flows through a converging diverging nozzle with throat diameter 2cm. It exits smoothly
-Dominant- [34]

Answer:

The answer is "3.74 \ cm\ \ and \ \ 0.186 \frac{kg}{s}"

Explanation:

Given data:  

Initial temperature of tank T_1 = 300^{\circ}\ C= 573 K

Initial pressure of tank P_1= 400 \ kPa

Diameter of throat d* = 2 \ cm

Mach number at exit M = 2.8

In point a:

calculating the throat area:

A*=\frac{\pi}{4} \times d^2

      =\frac{\pi}{4} \times 2^2\\\\=\frac{\pi}{4} \times 4\\\\=3.14 \ cm^2

Since, the Mach number at throat is approximately half the Mach number at exit.  

Calculate the Mach number at throat.  

M*=\frac{M}{2}\\\\=\frac{2.8}{2}\\\\=1.4

Calculate the exit area using isentropic flow equation.

\frac{A}{A*}= (\frac{\gamma -1}{2})^{\frac{\gamma +1}{2(\gamma -1)}}  (\frac{1+\frac{\gamma -1}{2} M*^2}{M*})^{\frac{\gamma +1}{2(\gamma -1)}}

Here: \gamma is the specific heat ratio. Substitute the values in above equation.

\frac{A}{3.14}= (\frac{1.4-1}{2})^{-\frac{1.4+1}{2(1.4 -1)}}  (\frac{1+\frac{1.4-1}{2} (1.4)^2}{1.4})^{\frac{1.4+1}{2(1.4-1)}} \\\\A=\frac{\pi}{4}d^2 \\\\10.99=\frac{\pi}{4}d^2 \\\\d = 3.74 \ cm

exit diameter is 3.74 cm

In point b:

Calculate the temperature at throat.

\frac{T*}{T}=(1+\frac{\Gamma-1}{2} M*^2)^{-1}\\\\\frac{T*}{573}=(1+\frac{1.4-1}{2} (1.4)^2)^{-1}\\\\T*=411.41 \ K

Calculate the velocity at exit.  

V*=M*\sqrt{ \gamma R T*}

Here: R is the gas constant.  

V*=1.4 \times \sqrt{1.4 \times 287 \times 411.41}\\\\=569.21 \ \frac{m}{s}

Calculate the density of air at inlet

\rho_1 =\frac{P_1}{RT_1}\\\\=\frac{400}{ 0.287 \times 573}\\\\=2.43\  \frac{kg}{m^3}

Calculate the density of air at throat using isentropic flow equation.  

\frac{\rho}{\rho_1}=(1+\frac{\Gamma -1}{2} M*^2)^{-\frac{1}{\Gamma -1}} \\\\\frac{\rho *}{2.43}=(1+\frac{1.4-1}{2} (1.4)*^2)^{-\frac{1}{1.4-1}} \\\\\rho*= 1.045 \ \frac{kg}{m^3}

Calculate the mass flow rate.  

m= \rho* \times A* \times V*\\\\= 1.045 \times 3.14 times 10^{-4} \times 569.21\\\\= 0.186 \frac{kg}{s}

5 0
3 years ago
Other questions:
  • List and describe three classifications of burns to the body.
    13·2 answers
  • 5. Name two health problems that fume can cause?<br> a)....<br> b)......
    10·2 answers
  • A 2-cm-diameter vertical water jet is injected upward by a nozzle at a speed of 15 m/s. Determine the maximum weight of a flat p
    10·1 answer
  • What are four engineering degrees that can help lead you to becoming an aerospace engineer
    6·1 answer
  • Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
    14·1 answer
  • A 5-mm-thick stainless steel strip (k = 21 W/m•K, rho = 8000 kg/m3, and cp = 570 J/kg•K) is being heat treated as it moves throu
    6·1 answer
  • What is 94*738^389428394
    8·1 answer
  • Pleaseeee help me with this!!
    10·1 answer
  • A demand factor of _____ percent applies to a multifamily dwelling with ten units if the optional calculation method is used.
    14·1 answer
  • You are coming to this intersection, and are planning on turningright. There is a vehicle close behind you. You should?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!