Using weighted average method
Statement of equivalent units
                                                    Material    Conversion
                                                     Units         Units
Units transferred out                   70,000       70,000
Add: Closing work-in-progress   <u> 25,000 </u>      <u> 6,250</u>
Average divisor                            <u> 95,000 </u>    <u>76,250</u>
                         Computation of cost per unit
                                                               Material   Conversion
                                                                    $               $
Cost of beginning work-in-progress   3,500      16,000
Cost added                                           <u> 25,000 </u>   <u>45,000</u>
Total cost                                               <u> 28,500 </u>   <u>61,000</u>
Material cost per unit = <u>$28,500</u>
                                          95,000 units
                                     = $0.30 per unit
Conversion cost per unit = <u>$61,000</u>
                                             76,250 units     
                                           = $0.80 per unit
  Value of units transferred out
   Material = 70,000 x $0.30  = $21,000
   Conversion = 70,000 x $0.80 = $56,000
   Value of closing work-in-progress
   Material = 25,000 x $0.30 = $7,500
   Conversion = 6,250 x $0.80 = $5,000
Explanation:
In this case, we will obtain the average divisor by adding the ending work-in-progress to the units transferred out. Then, we will determine the total cost of material and conversion ,which is the aggregate of cost of opening work-in -progress and cost added during the year. We also need to obtain the unit cost of material and conversion, which is total cost of material and conversion divided by the average divisor.  
Finally, we will value the units transferred out and ending work-in-progress at unit cost of material and conversion.