The answer is 6. plug it in for yourself and you will see
Answer:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean
and standard deviation 
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean
and standard deviation 
In this question:

Then

By the Central Limit Theorem:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean
and standard deviation 
Answer:
it would be 72cm
Step-by-step explanation:
Step-by-step explanation:
-2 x 3/7 = (-2 x 3) /7
= -6/7