Data Given:
Time = t = 30.6 s
Current = I = 10 A
Faradays Constant = F = 96500
Chemical equivalent = e = 63.54/2 = 31.77 g
Amount Deposited = W = ?
Solution:
According to Faraday's Law,
W = I t e / F
Putting Values,
W = (10 A × 30.6 s × 31.77 g) ÷ 96500
W = 0.100 g
Result:
0.100 g of Cu²⁺ is deposited.
Answer:
The number is mostly related to the mass or the weight of the element.
Explanation:
Answer:
2.4
⋅
10
24
Explanation:
All that you need to know here is that in order for a given sample of water to contain exactly 1 mole of water, it must contain 6.022
⋅
10
23 molecules of water.
This is known as Avogadro's constant and essentially acts as the definition of a mole. If you have 6.022
⋅
10
23 molecules of water, then you can say for a fact that you have 1 mole of water.
Oxygen is the 8th element in the periodic table. This means that oxygen has 8 protons<span> and 8 electrons. In order to get the number of neutrons you take the atomic weight in this case 15.9999~16 and you subtract it by the number of protons (16-8) (o_O)
</span>