Boric acid, H3BO3, in aqueous solution would only give out one H+ ion. As it is also produce OH ion and by hydrolysis it produces one proton. <span>All the boron compounds (BX3) are having only 6 valence electrons in it and should follow the octet rule by taking another electron.</span>
B(OH)3 + 2 H2O → B(OH)4− + H3O
Answer:
2-
Explanation:
For an element to be stable, it must follow the octet rule: an atom will gain, lose or share electrons until its valence shell is complete with 8 electrons.
An element with the valence electron configuration ns²np⁴ has 6 (2+4) electrons in its valence shell. Thus, in order to fulfill the octet, it will gain 2 electrons. As a consequence, it will form an anion with charge 2-.
Answer:
2
3
Explanation:
To infer the last energy of the given atoms, we need to write their electronic configuration:
For N = 1S² 2S² 2P³
Mg = 1S² 2S² 2P⁶ 3S²
The energy levels are usually designated as;
n = 1
n = 2
n = 3
n =4
For N, the last energy level is 2
Mg, the last energy level is 3
We can also determine this number by the periods the atoms can be found.
Answer:
<h2>6.64 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>6.64 moles</h3>
Hope this helps you
Answer:
More/ Alot? I think is what you are looking for?
Explanation:
It will definitely have some but I'm not sure on what word you are looking for.