Vertices (3,0),(-3,0) co-vertices (0,-5),(0,5)
transverse axis (line passing vertices) is on(or parallel to) x-axis then formula is
(x-h)^2/a^2 - (y-k)^2/b^2 = 1
..notice.. x^2 is on positive / y^2 is on negative
center (h,k) is midway between vertices = (0,0)
we have h = k = 0 and now formula is
x^2/a^2 - y^2/b^2 = 1
a is the distance from a vertex to center = 3
b is the distance from a co-vertex to center = 5
the formula is
x^2/3^2 - y^2/5^2 = 1 ... answer is the 1st
Sum of interior angles of a triangle = 180
so
<span>third angle = 180 - 78 - 49 = 53
</span>
Complete question is;
A model for a company's revenue from selling a software package is R = -2.5p² + 500p, where p is the price in dollars of the software. What price will maximize revenue? Find the maximum revenue.
Answer:
Price to maximize revenue = $100
Maximum revenue = $25000
Step-by-step explanation:
We are told that:
R = -2.5p² + 500p, where p is the price in dollars of the software.
The maximum revenue will occur at the vertex of the parabola.
Thus, the price at this vertex is;
p = -b/2a
Where a = - 2.5 and b = 500
Thus:
p = -500/(2 × -2.5)
p = -500/-5
p = 100 in dollars
Maximum revenue at this price is;
R(100) = -2.5(100)² + 500(100)
R(100) = -25000 + 50000
R(100) = $25000
Answer:
c) 25 cm^2
d) 52.5 cm^2
Step-by-step explanation:
5*2 = 1
10/2 = 5
40/2 = 20
20+5 = 25
This is just scratch work^