1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
15

1. the sum of five times a number and -2, added to seven times the number

Mathematics
1 answer:
emmasim [6.3K]2 years ago
7 0
1. (5x - 2) + 7x = 12x - 2

2. 6(x - 5) > 22
6x - 30 > 22
6x > 52
x > 52/6
x > 26/3
You might be interested in
Find the direct relationship between y and x . <br> x=e^2t<br> y=e^t
olya-2409 [2.1K]

Answer:

x = y²

Step-by-step explanation:

Given

x = e^{2t} and y = e^{t}

Note that

x = e^{2t} = e^{t} × e^{t} = y²

Thus x = y²

5 0
3 years ago
Read 2 more answers
The value, V(m), of a comic book m months after publication has an average rate of change of -0.04 between m = 36 and m
vodka [1.7K]

Answer:

I believe the correct answer is C. The value of the comic book decreased by an average of $0.04 each month between m = 36 and m = 60.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
What is 674×673×142÷3​
anzhelika [568]

Step-by-step explanation:

674 \times 673 \times 142 \div 3 \\  \\ =  674 \times 673 \times 142  \times  \frac{1}{3}  \\  \\  = 64,411,484\times  \frac{1}{3}   \\  \\  = 21,470,494.7 \\

8 0
3 years ago
How do I do this?<br> 4/5x&gt;14
Likurg_2 [28]

Well, first, you need to know what you want to 'do' to it.

You want to find the description of what 'x' has to be in order to
make that inequality a true statement.  Here's one way to do it:

                                              4/5 x > 14

Multiply each side by  5 :     4    x  >  70

Divide each side by  4 :             x  >  17.5 .

That's it.  As long as 'x' is more than 17.5 ,
the original inequality is true.
3 0
3 years ago
Particle P moves along the y-axis so that its position at time t is given by y(t)=4t−23 for all times t. A second particle, part
sergey [27]

a) The limit of the position of particle Q when time approaches 2 is -\pi.

b) The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2.

c) The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}.

<h3>How to apply limits and derivatives to the study of particle motion</h3>

a) To determine the limit for t = 2, we need to apply the following two <em>algebraic</em> substitutions:

u = \pi t (1)

k = 2\pi - u (2)

Then, the limit is written as follows:

x(t) =  \lim_{t \to 2} \frac{\sin \pi t}{2-t}

x(t) =  \lim_{t \to 2} \frac{\pi\cdot \sin \pi t}{2\pi - \pi t}

x(u) =  \lim_{u \to 2\pi} \frac{\pi\cdot \sin u}{2\pi - u}

x(k) =  \lim_{k \to 0} \frac{\pi\cdot \sin (2\pi-k)}{k}

x(k) =  -\pi\cdot  \lim_{k \to 0} \frac{\sin k}{k}

x(k) = -\pi

The limit of the position of particle Q when time approaches 2 is -\pi. \blacksquare

b) The function velocity of particle Q is determined by the <em>derivative</em> formula for the division between two functions, that is:

v_{Q}(t) = \frac{f'(t)\cdot g(t)-f(t)\cdot g'(t)}{g(t)^{2}} (3)

Where:

  • f(t) - Function numerator.
  • g(t) - Function denominator.
  • f'(t) - First derivative of the function numerator.
  • g'(x) - First derivative of the function denominator.

If we know that f(t) = \sin \pi t, g(t) = 2 - t, f'(t) = \pi \cdot \cos \pi t and g'(x) = -1, then the function velocity of the particle is:

v_{Q}(t) = \frac{\pi \cdot \cos \pi t \cdot (2-t)-\sin \pi t}{(2-t)^{2}}

v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}}

The velocity of particle Q is v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t -\sin \pi t}{(2-t)^{2}} for all t \ne 2. \blacksquare

c) The vector <em>rate of change</em> of the distance between particle P and particle Q (\dot r_{Q/P} (t)) is equal to the <em>vectorial</em> difference between respective vectors <em>velocity</em>:

\dot r_{Q/P}(t) = \vec v_{Q}(t) - \vec v_{P}(t) (4)

Where \vec v_{P}(t) is the vector <em>velocity</em> of particle P.

If we know that \vec v_{P}(t) = (0, 4), \vec v_{Q}(t) = \left(\frac{2\pi\cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, 0 \right) and t = \frac{1}{2}, then the vector rate of change of the distance between the two particles:

\dot r_{P/Q}(t) = \left(\frac{2\pi \cdot \cos \pi t - \pi\cdot t \cdot \cos \pi t + \sin \pi t}{(2-t)^{2}}, -4 \right)

\dot r_{Q/P}\left(\frac{1}{2} \right) = \left(\frac{2\pi\cdot \cos \frac{\pi}{2}-\frac{\pi}{2}\cdot \cos \frac{\pi}{2} +\sin \frac{\pi}{2}}{\frac{3}{2} ^{2}}, -4 \right)

\dot r_{Q/P} \left(\frac{1}{2} \right) = \left(\frac{4}{9}, -4 \right)

The magnitude of the vector <em>rate of change</em> is determined by Pythagorean theorem:

|\dot r_{Q/P}| = \sqrt{\left(\frac{4}{9} \right)^{2}+(-4)^{2}}

|\dot r_{Q/P}| = \frac{4\sqrt{82}}{9}

The rate of change of the distance between particle P and particle Q at time t = \frac{1}{2} is \frac{4\sqrt{82}}{9}. \blacksquare

<h3>Remark</h3>

The statement is incomplete and poorly formatted. Correct form is shown below:

<em>Particle </em>P<em> moves along the y-axis so that its position at time </em>t<em> is given by </em>y(t) = 4\cdot t - 23<em> for all times </em>t<em>. A second particle, </em>Q<em>, moves along the x-axis so that its position at time </em>t<em> is given by </em>x(t) = \frac{\sin \pi t}{2-t}<em> for all times </em>t \ne 2<em>. </em>

<em />

<em>a)</em><em> As times approaches 2, what is the limit of the position of particle </em>Q?<em> Show the work that leads to your answer. </em>

<em />

<em>b) </em><em>Show that the velocity of particle </em>Q<em> is given by </em>v_{Q}(t) = \frac{2\pi\cdot \cos \pi t-\pi\cdot t \cdot \cos \pi t +\sin \pi t}{(2-t)^{2}}<em>.</em>

<em />

<em>c)</em><em> Find the rate of change of the distance between particle </em>P<em> and particle </em>Q<em> at time </em>t = \frac{1}{2}<em>. Show the work that leads to your answer.</em>

To learn more on derivatives, we kindly invite to check this verified question: brainly.com/question/2788760

3 0
2 years ago
Other questions:
  • PLEASE HELP ASAP!
    13·2 answers
  • Danielle fill a container with soil by using a bowl. The bowl holds 3/4 cup of soil. Danielle use 13 full bowl of soil to fill t
    14·1 answer
  • Consider the function represented by the table.
    13·1 answer
  • What are paralellograms​
    11·1 answer
  • Two competing gyms each offer childcare while parents work out
    9·1 answer
  • What is always true of an object with a lot of mass?
    7·2 answers
  • The table below represents the closing prices of stock ABC for the last five
    12·1 answer
  • Given that x = y - 2 / y -3 Express y in terms of x ​
    5·1 answer
  • 4
    8·2 answers
  • What is the exponential function that best models the number of gnats the scientists have
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!