Option 3 is the most reasonable
I hope this helped <3
Please give brainliest :)
The relationship between the masses of the object and the gravitational force between them is a direct relationship
Explanation:
The gravitational force between two objects is given by the equation:
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
We observe that:
- The gravitational force is proportional to the masses of the two objects, m1 and m2, so if the masses increase, the force will increase as well (so, this is a direct relationship)
- The gravitational force is inversely proportional to the square of the separation between the objects, so if the distance is increased, the force will decrease (so, this is an inverse relationship)
Learn more about gravitational force here:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer:
The size of the force that pushes the wall is 12,250 N.
Explanation:
Given;
mass of the wrecking ball, m = 1500 kg
speed of the wrecking ball, v = 3.5 m/s
distance the ball moved the wall, d = 75 cm = 0.75 m
Apply the principle of work-energy theorem;
Kinetic energy of the wrecking ball = work done by the ball on the wall
¹/₂mv² = F x d
where;
F is the size of the force that pushes the wall
¹/₂mv² = F x d
¹/₂ x 1500 x 3.5² = F x 0.75
9187.5 = 0.75F
F = 9187.5 / 0.75
F = 12,250 N
Therefore, the size of the force that pushes the wall is 12,250 N.