First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed

, and an accelerated motion on the y-axis, with initial speed

and acceleration

:


where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).
To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring

Therefore:

which has two solutions:

is the time of the beginning of the motion,

is the time at which the projectile hits the ground.
Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
Your body is pushing down on a chair because it is being attracted by gravity, the reason that your body is not moving down because there is a normal force acting on your body; together the net force of weight (m*g) and normal force is equal to zero
Answer:
friction can be used to slow things down but it can also be harmful because it can cause fire to start
Answer:
F = 0.483 N
Explanation:
Initial momentum, 
Final momentum, 
Time, t = 31 s
We need to find the force of a lead ball. We can use here the impulse momentum theorem.

F is force

So, the force is 0.483 N.