There is a positive correlation between luminosity and mass of stars, meaning the more luminous a star is, the more massive it is likely to be as well. Given this, the masses of the stars should be in descending order of brightness.
Star 1 is the most luminous, so it should be heaviest, and the luminosity descends to Star 4.
Option B is the only chart that conforms to this, so it is the answer.
Answer is B
347÷134=2.589552239 meters per second
2.589552239×60= 155.3731343 meters per hour
155.3731343 meters per hour= 0.096544389701642 miles per hour
hopefully this was right.
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.