Answer:
Basic kinematics, negating drag and assuming ideal conditions, we use the equation:
d=vi*t+1/2*a*t^2
Since vi is 0 (we know this because you’re dropping it, not throwing it)…
…and the only acceleration acting on it is gravity, a=9.8 m/s^2…
…we get
d=1/2(9.8)(5)^2
Explanation:
Some quick mental math tells us that this is about 125 m.
Plugging it in, we find it to be 122.5 m.
B. When the sun and the moon are aligned, their combined gravitational force attracts the water, causing super high tides on one side of the planet, and super low tides on the opposite side.
Answer:
<h2>98 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
PE = 5 × 9.8 × 2
We have the final answer as
<h3>98 J</h3>
Hope this helps you
Use Graphite on the wheel bearings and make an aero dynamic body and place the balloon at the back
You need distance and time to find average speed.