Answer: magnitude of the magnetic field at a distance of 19.4 cm from the wire=4.29mT
Explanation:
According to Biot-Savart law, A magnetic field generated by a current carrying wire at a distance is represented as
B=μ₀I/ 2πr
B = magnetic field intensity 1000 mT =1T, 6.50mT = 6.50 X 10^-3T
μ₀ =permeability of free space 4π × 10−7 H/m
I = current intensity
r = radius, 100cm = 1m, 12.8 cm= 12.8 x 10^-2m
6.50 X 10^-3 = μ₀ x I/ 2 π X 12.8 X 10^-2
I =6.50 X 10 ^-3 X 2π X X 12.8 X 10^-2/ 4π × 10−7 H/m
I= 4160 A
when the magnetic field is at 19.4 cm from the wire
B=μ₀I/ 2πr
= 4π × 10−7 H/m x4160/ 2π x 19.4 x 10^-2
=0.004288
= 4.29x 10 ^-3T
= 4.29mT
Answer:
13.7%
Explanation:
Given that,
Heat absorbed by the engine = 97.2 kJ
Heat exhausted by the engine in each cycle = 83.8 kJ
We need to find the efficiency of the engine. It is calculated by the formula.

so, the efficiency of heat engine is 13.7%.
<h2>Answer: decreasing</h2>
An RC circuit is an electrical circuit composed of resistors and capacitors, where the charging time
of the circuit is proportional to the magnitude of the electrical resistance
and the capacity
of the capacitor.
As shown below:
In this context, the electrical resistance is the opposition to the flow of electrons when moving through a conductor.
Therefore:
<h2>When a capacitor is being charged in an RC circuit, the current flowing through a resistor <u>decreases</u>.</h2>
And the correct option is b.
Till the time car is just adjacent to the bicycle we can say
distance moved by cycle = distance moved by car
Time taken by car to accelerate from rest


Time taken by cycle to accelerate

now the distance moved by cycle in time "t"

distance moved by car in same time

now make them equal



so cycle will move ahead of car for t = 5.68 s
The ratio of the distance moved by the point at which the effort is applied in a simple machine to the distance moved by the point at which the load is applied, in the same time. In the case of an ideal (frictionless and weightless) machine, velocity ratio = mechanical advantage. Velocity ratio is sometimes called distance ratio.