Answer:
F = 1.24*10^4 N
Explanation:
Given
Depth of the ship, h = 25 m
Density of water, ρ = 1.03*10^3 kg/m³
Diameter of the hatch, d = 0.25 m
Pressure of air, P(air) = 1 atm
Pressure of water =
P(w) = ρgh
P(w) = 1.03*10^3 * 9.8 * 25
P(w) = 2.52*10^5 N/m²
P(net) = P(w) + P(air) - P(air)
P(net) = P(w)
P(net) = 2.52*10^5 N/m²
Remember,
Pressure = Force / Area, so
Force = Area * Pressure
Area = πr² = πd²/4
Area = 3.142 * 0.25²/4
Area = 3.142 * 0.015625
Area = 0.0491 m²
Force = 0.0491 * 2.52*10^5
F = 12373 N
F = 1.24*10^4 N
Answer:
everyone else does this to me so lol
Explanation:
Current flows from High Potential (Positive) to Low potential (Negative)
So, option D is your answer!
Hope this helps!
Answer:
4.58×10²³ atoms
5.94×10⁻²¹ J
1340 m/s
Explanation:
Use ideal gas law to find moles of gas.
PV = nRT
(1.266 atm × 101300 Pa/atm) (4/3 π (0.15 m)³) = n (8.31451 J/mol/K) (14 + 273) K
n = 0.760 mol
Use Avogadro's number to find number of atoms.
(0.760 mol) (6.02214×10²³ atom/mol) = 4.58×10²³ atoms
Average kinetic energy per molecule is:
KE = 3/2 kT
KE = 3/2 (1.38066×10⁻²³ J/K) (14 + 273) K
KE = 5.94×10⁻²¹ J
RMS speed of each atom is:
KE = 1/2 mv²
5.94×10⁻²¹ J/atom = 1/2 (0.004 kg/mol) (1 mol / 6.02214×10²³ atom) v²
v = 1340 m/s
Answer:
θ = 45º
Explanation:
The light that falls on the second polarized is polarized, therefore it is governed by the law of Maluz
I = I₀ cos² θ
in the problem they ask us
I = ½ I₀
let's look for the angles
½ I₀ = I₀ cos² θ
cos θ = √ ½ = 0.707
θ = cos 0.707
θ = 45º