Answer:
B
Explanation:
Fermium is a synthetic element with the symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared.[3] A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.
It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named after Enrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.
Answer:
Explanation:
Answer:
Explanation:
The half life is the time taken for half of a radioactive substance to disintegrate.
The shorter the half life, the larger the decay constant and the faster the decay process.
For a very large half life, it would take a very long time for the radioactive nuclide to decay to half.
With each half life reached, a new set of daughter cell is formed. Atoms that have short half life would decay rapidly. Every radionuclide has its own characteristic half-life.
If the number of half-lives increases, then the number of radioactive atoms decreases, because approximately half of the atoms' nuclei decay with each half-life. With this observation, we can hypothesise and conduct experiment to support the assertion that as the number of half-lives increases then the number of radioactive atoms decreases.
Solution
Let a cell of emf E be connected across the entire length L of a potentiometer wire . Now , if the balance point is obtained at a length l during measurement of an unknown voltage
.
The balance point is not on the potentiometer wire - this statement means that
. In that case ,
l > L
V > E
Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is

where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,

And so, the total energy emitted by the sample is
