1/3 belongs to the rational set and to the real set.
<h3>
To which sets does the number below belong?</h3>
Here we have the number 1/3.
First, remember that we define rational numbers as these numbers that can be written as a quotient between two integers.
Here 1 is an integer and 3 is an integer, then 1/3 is a rational number.
Also, the combination between the rational set and the irrational set is the set of the real numbers, then 1/3 is also a real number.
Then, concluding:
1/3 belongs to the rational set and to the real set.
If you want to learn more about rational numbers:
brainly.com/question/12088221
#SPJ1
The answer to that would be 0 because the line goes through the orgin witch the points are 0
Answer:
50MB.
Step-by-step explanation:
Its on Khan Academy lol. Good luck on your unit test!!!
Answer:
numerator degree of freedom = 3
Denominator degree of freedom = 47
Step-by-step explanation:
The numerator degree of freedom is given by :
p - 1 ; where p = number of predictors ;
p = number of independent variables + 1
Number of independent variables = 3
p = 3 + 1 = 4
Numerator degree of freedom = p - 1 = 4 - 1 = 3
The denominator degree of freedom = n - p ; where n = number of observations
Number of observations, n = 51
Denominator degree of freedom = n - p = 51 - 4 = 47
If we consider each alphabet is at 1 unit, then U is at a distance of 1 unit and X is at a distance of 4 units . To find the scale factor, we need to see 1 multiply by what is equal to 4. And 1*4=4
So the scale factor is 4 . And the answer is 4 .