<span>Assuming that this is referring to the same list of options that was posted before with this question, the correct response was the first one, although I forget what it was. </span>
Answer:

Step-by-step explanation:
So we have the system:

If we isolate the x-variable in the first equation:

Subtract 2y from both sides:

Divide both sides by -1:

Therefore, we would substitute the above into the second equation:

The answer is 2y+6
Further notes:
To solve for the system, distribute:

Simplify:

Subtract:

Divide:

Now, substitute this value back into the isolated equation:

In this problem we need to find the value of a and b. So given that t<span>he function should be in the form f(n) = an + b and we know each value of n, then out goal is to find a and b.
For getting this purpose, we need to find a system of two equations (given that we have two unknown variables)
Therefore:
(1) f(0) = a(1) + b = 18
</span>∴ a + b = 18
<span>
(2) f(1) = a(2) + b = 24
</span>∴ 2a + b = 24<span>
Solving for a and b we have:
a = 6
b = 12
Finally:
f(n) = 6n + 12</span>
When negative five is subtracted from a number the result is 10. The number is 5.
x - (-5) = 10
x + 5 = 10
x = 10 - 5
x = 5
The marginal distribution for gender tells you the probability that a randomly selected person taken from this sample is either male or female, regardless of their blood type.
In this case, we have total sample size of 714 people. Of these, 379 are male and 335 are female. Then the marginal probability mass function would be
![\mathrm{Pr}[G = g] = \begin{cases} \dfrac{379}{714} \approx 0.5308 & \text{if }g = \text{male} \\\\ \dfrac{335}{714} \approx 0.4692 & \text{if } g = \text{female} \\\\ 0 & \text{otherwise} \end{cases}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BG%20%3D%20g%5D%20%3D%20%5Cbegin%7Bcases%7D%20%5Cdfrac%7B379%7D%7B714%7D%20%5Capprox%200.5308%20%26%20%5Ctext%7Bif%20%7Dg%20%3D%20%5Ctext%7Bmale%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B335%7D%7B714%7D%20%5Capprox%200.4692%20%26%20%5Ctext%7Bif%20%7D%20g%20%3D%20%5Ctext%7Bfemale%7D%20%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D)
where G is a random variable taking on one of two values (male or female).