The volume of the cylinder is:
V= pi* (r^2) * h.
So the volume is = pi * (5.7/2)^2 * 12 = 306.2 in^2.
Since it is scaled up by the factor of 1.5, so we have to multiply each dimension with 1.5.
That means the diameter will be 8.55 and the height will be 18. so the scaled up volume will be
=pi * ((5.7*1.5)/2)^2 * (12*1.5)
The answer then would have to be 1033.5
Answer:
honey mustard or chick fil a sauce their special sauce
Explanation:
The electric field E of a charge is defined as E=F/Q where F is the Coulomb force and Q is the test charge.
E=(1/Q)*k*(q*Q)/r², where k=9*10^9 N*m²/C², q is the point charge, Q is the test charge and r is the distance between the charges.
So E=(k*q)/r²
When we input the numbers we get that electric field E of a point chage q is:
E=(9*10^9)*(5.4*10^-8)/0.2²=486/0.04=12150 N/C.
This is roughly E=12000 N/C =1.2*10^4 N/C
The correct answer is B.
Answer:
R = 6.3456 10⁴ mile
Explanation:
For this exercise we will use Newton's second law where force is gravitational force
F = m a
The satellite is in a circular orbit therefore the acceleration is centripetal
a = v² / r
Where the distance is taken from the center of the Earth
G m M / r² = m v² / r
G M / r = v²
The speed module is constant, let's use the uniform motion relationships, with the length of the circle is
d = 2π r
v = d / t
The time for a full turn is called period (T)
Let's replace
G M / r = (2π r / T)²
r³ = G M T²²2 / 4π²
r = ∛ (G M T² / 4π²)
We have the magnitudes in several types of units
T = 88.59 h (3600 s / 1h) = 3.189 10⁵ s
Re = 6.37 10⁶ m
Let's calculate
r = ∛ (6.67 10⁻¹¹ 5.98 10²⁴ (3,189 10⁵)²/4π²)
r = ∛ (1.027487 10²⁴)
r = 1.0847 10⁸ m
This is the distance from the center of the Earth, the distance you want the surface is
R = r - Re
R = 108.47 10⁶ - 6.37 10⁶
R = 102.1 10⁶ m
Let's reduce to miles
R = 102.1 10⁶ m (1 mile / 1609 m)
R = 6.3456 10⁴ mile