Answer:
Explanation:
The mass of the block is 0.5kg
m = 0.5kg.
The spring constant is 50N/m
k =50N/m.
When the spring is stretch to 0.3m
e=0.3m
The spring oscillates from -0.3 to 0.3m
Therefore, amplitude is A=0.3m
Magnitude of acceleration and the direction of the force
The angular frequency (ω) is given as
ω = √(k/m)
ω = √(50/0.5)
ω = √100
ω = 10rad/s
The acceleration of a SHM is given as
a = -ω²A
a = -10²×0.3
a = -30m/s²
Since we need the magnitude of the acceleration,
Then, a = 30m/s²
To know the direction of net force let apply newtons second law
ΣFnet = ma
Fnet = 0.5 × -30
Fnet = -15N
Fnet = -15•i N
The net force is directed to the negative direction of the x -axis
Mass, m = 5890g
Change in temperature, θ = Final_temperature - Initial_temperature
= 315 - 462°C
= -147°C
Specific heat capacity of aluminum, c = 0.900 J/(g*K)
=mcθ
=5890g x 0.900 J/(g*K) x -147°C
=-779,247j
Answer would be C.
The two wires carry current in opposite directions: this means that if we see them from above, the magnetic field generated by one wire is clock-wise, while the magnetic field generated by the other wire is anti-clockwise. Therefore, if we take a point midway between the two wires, the resultant magnetic field at this point is just the sum of the two magnetic fields, since they act in the same direction.
Therefore, we should calculate the magnetic field generated by each wire and then calculate their sum. We are located at a distance r=0.10 m from each wire.
The magnetic field generated by wire 1 is:

The magnetic field generated by wire 2 is:

And so, the resultant magnetic field at the point midway between the two wires is
Answer:
sound intensity is explained by the following formula I= P/A where I= sound intensity(W/m²),P=power(W),A= area(m²) I hope this helps good luck!