Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
Answer:
Step-by-step explanation:
Cameron, Eliot, Ryan and Ava can ride as their height is more than or equal to 54
Answer: 3.97000947 × 10^4
Twenty percent of $35 is 0.20($35) = $7. The discount is $7.
g(x) = 3√(x-5) -1
The process of altering a graph to produce a different version of the preceding graph is known as graph transformation. The graphs can be moved about the x-y plane or translated. They may also be stretched, or they may undergo a mix of these changes.
Horizontal stretching: It means the graph is elongated or shrink in x direction.
Vertical stretching : It means the graph is elongated or shrink in y direction
Vertical translation : It means moving the base of the graph in y direction
Horizontal translation : It means moving the base of the graph in x direction
According to rules of transformation f(x)+c shift c units up and f(x)-c shift c units down.
Therefore, in order to move the graph down 1 units, we need to subtract given function by 1 , we get
g(x) = 3√x -1
According to rules of transformation f(x+c) shift c units left and f(x-c ) shift c units right.
Therefore, in order to move the graph left by 5 units, we need to add given function by 5 , we get
g(x) = 3√(x-5) -1
To learn more about graphical transformation, refer to brainly.com/question/4025726
#SPJ9