Answer:
5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 1 mole of the compound contains 6.023 * 10²³ atoms, 8.3 moles of the compound how many atoms does it have?

amount of atoms≅ 5*10²⁴ atoms
<u><em>5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.</em></u>
If you meant the word silicon then yes, silicon is a semiconductor and its ability to conduct gets better as the temp. rises
Indium has 49 protons
mass number (# of neutrons and # of protons combined) is 115
115 - 49 = 66
66 neutrons
Structural isomers, as the structure of the molecule is different
Answer:
Explanation:
To find the concentration; let's first compute the average density and the average atomic weight.
For the average density
; we have:

The average atomic weight is:

So; in terms of vanadium, the Concentration of iron is:

From a unit cell volume 

where;
= number of Avogadro constant.
SO; replacing
with
;
with
;
with
and
with 
Then:
![a^3 = \dfrac { n \Big (\dfrac{100}{[(100-C_v)/A_{Fe} ] + [C_v/A_v]} \Big) } {N_A\Big (\dfrac{100}{[(100-C_v)/\rho_{Fe} ] + [C_v/\rho_v]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2FA_%7BFe%7D%20%5D%20%2B%20%5BC_v%2FA_v%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2F%5Crho_%7BFe%7D%20%5D%20%2B%20%5BC_v%2F%5Crho_v%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100-C_v)A_{v} ] + [C_v/A_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100-C_v)/\rho_{v} ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100-C_v%29A_%7Bv%7D%20%5D%20%2B%20%5BC_v%2FA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100-C_v%29%2F%5Crho_%7Bv%7D%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100A_{v}-C_vA_{v}) ] + [C_vA_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100\rho_{v} - C_v \rho_{v}) ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100A_%7Bv%7D-C_vA_%7Bv%7D%29%20%5D%20%2B%20%5BC_vA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100%5Crho_%7Bv%7D%20-%20C_v%20%5Crho_%7Bv%7D%29%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
Replacing the values; we have:



