it only happensonce every 7 years
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:
which is equivalent to
The question states that the second equation has an enthalpy, or "heat", of neutralization of . Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce or of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of .
The solution has a specific heat of . The solution thus have a heat capacity of . Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of , meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy. are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.
Adding an atom will increase the repulsion between existing atoms and lone pairs. Added atom will result in bond pair-bond pair and bond pair-lone pair repulsion. The magnitude of the lone pair-bond pair repulsion is greater than the bond pair-bond pair repulsion. The added atom will change the electron geometry and bring about a distortion in the molecular geometry.
Answer:
Two molecules of hydrogen combine with two molecules of oxygen to form hydrogen peroxide. Hence, its chemical formula is H2O2. It is the simplest peroxide (since it is a compound with an oxygen-oxygen single bond). Hydrogen peroxide has basic uses as an oxidizer, bleaching agent and antiseptic