Some patterns and trend that are present in the periodic table would be
1. electronegativity (from left-to-right it increases across the table)
2. ionization (from left-to right it increases and from bottom-to-top it increases)
3. electron affinity (same as ionization energy)
4. atom radius (increases opposite way; from right-to-left it increases and from top-to-bottom it increases)
5. melting point (higher melting points with metals and lower melting point with non-metals)
6. metallic character (same as atom radius)
All health professionals, including pharmacists, must be able to relate form to function..a grounding in anatmony is an essential foundation on which to underpin other knowledge relevant to clinical practice.
Answer:
12.99
Explanation:
<em>A chemist dissolves 716. mg of pure potassium hydroxide in enough water to make up 130. mL of solution. Calculate the pH of the solution. (The temperature of the solution is 25 °C.) Be sure your answer has the correct number of significant digits.</em>
Step 1: Given data
- Mass of KOH: 716. mg (0.716 g)
- Volume of the solution: 130. mL (0.130 L)
Step 2: Calculate the moles corresponding to 0.716 g of KOH
The molar mass of KOH is 56.11 g/mol.
0.716 g × 1 mol/56.11 g = 0.0128 mol
Step 3: Calculate the molar concentration of KOH
[KOH] = 0.0128 mol/0.130 L = 0.0985 M
Step 4: Write the ionization reaction of KOH
KOH(aq) ⇒ K⁺(aq) + OH⁻(aq)
The molar ratio of KOH to OH⁻is 1:1. Then, [OH⁻] = 0.0985 M
Step 5: Calculate the pOH
We will use the following expression.
pOH = -log [OH⁻] = -log 0.0985 = 1.01
Step 6: Calculate the pH
We will use the following expression.
pH + pOH = 14
pH = 14 - pOH = 14 -1.01 = 12.99