Aloha~! My name is Zalgo and I am here to help you out today. Those sort of conditions could be fore-boding/foreshadowing/warning that there will soon be a storm or that it will rain quite a lot. In the case of it being a storm, you should be a small room where there are no windows and nothing that is small that will fly towards you that could kill you.
I hope that this helps! :D
"Stay Brainly and stay proud!" - Zalgo
Pedigree charts are used to see traits that are present in families or individuals. For example, it can be used see if certain diseases are running through someone's family and if that individual will inherit the disease.
Answer:
Melting of ice
Explanation:
A physical change is one in which just the physical properties of the matter is altered. Most phase changes reaction falls under this type of change.
- Examples are boiling, melting, freezing, condensation, sublimation, magnetization of metals, breaking glass, cutting wood.
- No new kinds of matter is formed.
- The process is reversible
- No change in mass
Answer:
The answer to your question is V = 0.32 L
Explanation:
Data
Volume of NH₃ = ?
P = 3.2 atm
T = 23°C
mass of CaH₂ = 2.65 g
Balanced chemical reaction
6Ca + 2NH₃ ⇒ 3CaH₂ + Ca₃N₂
Process
1.- Convert the mass of CaH₂ to moles
-Calculate the molar mass of CaH₂
CaH₂ = 40 + 2 = 42 g
42 g ------------------ 1 mol
2.65 g -------------- x
x = (2.65 x 1)/42
x = 0.063 moles
2.- Calculate the moles of NH₃
2 moles of NH₃ --------------- 3 moles of CaH₂
x --------------- 0.063 moles
x = (0.063 x 2) / 3
x = 0.042 moles of NH₃
3.- Convert the °C to °K
Temperature = 23°C + 273
= 296°K
4.- Calculate the volume of NH₃
-Use the ideal gas law
PV = nRT
-Solve for V
V = nRT / P
-Substitution
V = (0.042)(0.082)(296) / 3.2
-Simplification
V = 1.019 / 3.2
-Result
V = 0.32 L
Answer: Option (B) is the correct answer.
Explanation:
Expression for the given decomposition reaction is as follows.

Let us assume that x concentration of
is present at the initial stage. Therefore, according to the ICE table,

Initial : x 0
Change : - 0.1 
Equilibrium : (x - 0.1) 0.2
Now, expression for
of this reaction is as follows.

Putting the given values into the above formula as follows.



x = 0.12
This means that
= x = 0.12 atm.
Thus, we can conclude that the initial pressure in the container prior to decomposition is 0.12 atm.