Answer:

Explanation:
Whenever a question asks you, "How long does it take to reach a certain concentration?" or something like that, you must use the appropriate integrated rate law expression.
The integrated rate law for a first-order reaction is
![\ln \left (\dfrac{[A]_{0}}{[A]} \right ) = kt](https://tex.z-dn.net/?f=%5Cln%20%5Cleft%20%28%5Cdfrac%7B%5BA%5D_%7B0%7D%7D%7B%5BA%5D%7D%20%5Cright%20%29%20%3D%20kt)
Data:
[A]₀ = 1.28 mol·L⁻¹
[A] = 0.17 [A]₀
k = 0.0632 s⁻¹
Calculation:
![\begin{array}{rcl}\ln \left (\dfrac{[A]_{0}}{0.170[A]_{0}} \right ) & = & 0.0632t\\\\\ln \left (5.882) & = & 0.0632t\\1.772 & = & 0.0632t\\\\t & = & \dfrac{1.772}{0.0632}\\\\t & = & \textbf{{28.0 s}}\\\end{array}\\\text{It will take } \boxed{\textbf{28.0 s}} \text{ for [HI] to decrease to 17.0 \% of its original value.}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Cln%20%5Cleft%20%28%5Cdfrac%7B%5BA%5D_%7B0%7D%7D%7B0.170%5BA%5D_%7B0%7D%7D%20%5Cright%20%29%20%26%20%3D%20%26%200.0632t%5C%5C%5C%5C%5Cln%20%5Cleft%20%285.882%29%20%26%20%3D%20%26%200.0632t%5C%5C1.772%20%26%20%3D%20%26%200.0632t%5C%5C%5C%5Ct%20%26%20%3D%20%26%20%5Cdfrac%7B1.772%7D%7B0.0632%7D%5C%5C%5C%5Ct%20%26%20%3D%20%26%20%5Ctextbf%7B%7B28.0%20s%7D%7D%5C%5C%5Cend%7Barray%7D%5C%5C%5Ctext%7BIt%20will%20take%20%7D%20%5Cboxed%7B%5Ctextbf%7B28.0%20s%7D%7D%20%5Ctext%7B%20for%20%5BHI%5D%20to%20decrease%20to%2017.0%20%5C%25%20of%20its%20original%20value.%7D)
Answer:
Whether the forces of attraction is strong or weak is explained below in details.
Explanation:
There are three distinct kinds of intermolecular forces in expressions of energy. They are (strongest to weakest) dipole-dipole, hydrogen bonding, and Van der Waals' strengths. Intermolecular forces are weak related to intramolecular forces – the energies which endure a molecule collectively. For instance, the covalent bond, including distributing electron sets among atoms, is much more powerful than the forces impersonate among neighboring molecules.
Aqueous nitric acid and aqueous ammonia reacts to form ammonium nitrate
HNO₃(aq)+NH₃(aq) = NH₄NO₃(aq)
HNO₃ +NH3 = NH₄ (+) + NO₃ (-)
Therefore the net ionic equation will be;
H⁺(aq) + NH₃ = NH₄⁺ (aq)
Answer:
Oxidation states are used in chemistry solutions. It is a bond in which electron transfers easily from one nucleus to another nucleus.
Explanation:
- Oxidation-reduction reactions have some rules.
- The oxidation state is 0 at an uncombined bond.
- The bond of oxidation reduction is +1 in alkeli metal.
- The bond in two metal is +2
- The oxidation reduction state at helogens is -1. It does not happened always.
- The oxygen bond in oxidation and reduction is -2.
- The sum of the oxidation state is equal to the compound charges.
- In this process the changes occur for any elements. Redox could be occur. Its oxidized and reduction reaction can be seen in this process.
Answer:
Explanation:
concepts, such as the internal energy of a system; heat or sensible heat, which are defined as types of energy transfer (as is work); or for the characteristic energy of a degree of freedom in a thermal system {\displaystyle kT}kT, where {\displaystyle T}T is temperature and {\displaystyle k}k is the Boltzmann constant.