Answer : The correct option is, (C) 6
Explanation :
Oxidation-reduction reaction : It is a reaction in which oxidation and reduction reaction occur simultaneously.
Oxidation reaction : It is the reaction in which a substance looses its electrons. In this oxidation state increases.
Reduction reaction : It is the reaction in which a substance gains electrons. In this oxidation state decreases.
The given unbalanced chemical reaction is,

Half reactions of oxidation and reduction are :
Oxidation :
......(1)
Reduction :
.......(2)
In order to balance the electrons, we multiply equation 1 by 2 and equation 2 by 3, we get:
Oxidation :
......(1)
Reduction :
.......(2)
The overall balanced chemical reaction will be:

From this reaction we conclude that the electrons are getting transferred from iron to iodine and the number of electrons transferred are 6 electrons.
Hence, the correct option is, (C) 6
Answer:
atomic mass of X is 48.0 amu
Explanation:
Let y be the atomic mass of X
Molar mass of O_2 is = 2×16 = 32 g / mol
X + O2 -----> XO_2
According to the equation ,
y g of X reacts with 32 g of O_2
24 g of X reacts with Z g of O_2
Z = ( 32×24) / y
But given that 24.0 g of X exactly reacts with 16.0 g of O_2
So Z = 16.0
⇒ (32×24) / y = 16.0
⇒ y = (32×24) / 16
y= 48.0
So atomic mass of X is 48.0 amu
Answer:
1)The molar mass of an atom is simply the mass of one mole of identical atoms. However, most of the chemical elements are found on earth not as one isotope but as a mixture of isotopes, so the atoms of one element do not all have the same mass.
2)Equally important is the fact that one mole of a substance has a mass in grams numerically equal to the formula weight of that substance. Thus, one mole of an element has a mass in grams equal to the atomic weight of that element and contains 6.02 X 1023 atoms of the element.
<span>No, the denisty of any substance/liquid is always constant, no matter what the volume or mass is. Once the mass g/ volume mL is taken into consideration, the effect of the ammount of liquid given is canceled out. Thus, no matter what your sample is, the density of water will always be 1 g/mL</span>
Answer:
Substances generate a smell when their molecules land on so-called olfactory neurones in our noses (which, for some things, is a pretty unpleasant thought). ... But this fails to explain why some molecules with similar shapes can smell completely different, while others with quite different shapes can have a similar scent.
Explanation:
I took chemistry