Answer:
and practice problems to learn how to find and evaluate composite functions. ... If f(x)=(1/x) and (f/g)(x)=((x+4)/(x^2+2x)), what is the function g?
Answer:
Answer B
Step-by-step explanation:
x = 0
fx =2*3
f(0)=2
f(1) =6 (1,6)
Answer is Graph B
<em><u>Hope this helps.</u></em>
So ive done the math and if you add both mA & mB , mC would equal 10
Answer:
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Step-by-step explanation:
1 Use Square of Sum: {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}(a+b)
2
=a
2
+2ab+b
2
.
({x}^{2}+2xy+{y}^{2})({x}^{2}+2xy+{y}^{2})(x
2
+2xy+y
2
)(x
2
+2xy+y
2
)
2 Expand by distributing sum groups.
{x}^{2}({x}^{2}+2xy+{y}^{2})+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
2
(x
2
+2xy+y
2
)+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
3 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2xy({x}^{2}+2xy+{y}^{2})+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2xy(x
2
+2xy+y
2
)+y
2
(x
2
+2xy+y
2
)
4 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}({x}^{2}+2xy+{y}^{2})x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
(x
2
+2xy+y
2
)
5 Expand by distributing terms.
{x}^{4}+2{x}^{3}y+{x}^{2}{y}^{2}+2{x}^{3}y+4{x}^{2}{y}^{2}+2x{y}^{3}+{y}^{2}{x}^{2}+2{y}^{3}x+{y}^{4}x
4
+2x
3
y+x
2
y
2
+2x
3
y+4x
2
y
2
+2xy
3
+y
2
x
2
+2y
3
x+y
4
6 Collect like terms.
{x}^{4}+(2{x}^{3}y+2{x}^{3}y)+({x}^{2}{y}^{2}+4{x}^{2}{y}^{2}+{x}^{2}{y}^{2})+(2x{y}^{3}+2x{y}^{3})+{y}^{4}x
4
+(2x
3
y+2x
3
y)+(x
2
y
2
+4x
2
y
2
+x
2
y
2
)+(2xy
3
+2xy
3
)+y
4
7 Simplify.
{x}^{4}+4{x}^{3}y+6{x}^{2}{y}^{2}+4x{y}^{3}+{y}^{4}x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
Answer:
3.14 square units
Step-by-step explanation:
Circumference of a circle = 2πr
2πr = 6.28
r = 6.28/2π
r = 3.142/π
Area of a circle = πr^2
slot in the value of r
Area of the circle = π( 3.142/π)^2
" = π(9.87/ π^2)
" = 9.87/π
π = 3.14
Area of a circle = 9.867/ (3.14)
" = 3.14 square units