Basically, the arrangement of electrons in electronic configuration follows three principles:
1. Aufbau Principle
You start from the highest energy level to the lowest. The arrangement is: <span>1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p.
2. Hund's Rule
Each box in the configuration can hold up to 2 electrons. This rule tells you to fill all boxes of one particular subshell with 1 electron first, before double occupying them.
3. Pauli's Exclusion Principle
This rule tells you that the two electrons in a box shall always have opposite spins, represented by one half-arrow up and one half-arrow down.</span>
Answer:
Solubility, length, hardness, color, mass, density, weight, volume, boiling, and point.
Explanation: Hope this helps
Answer:
MCO3 is BaCO3
The mass of CO2 produced is 0.28g of CO2
Explanation:
The first step in solving the question is to put down the balanced reaction equations as shown in the image attached. Secondly, we obtain the relative number of moles acid and base as mentioned in the question. The balanced neutralization reaction equation is used to obtain the number of moles of excess acid involved in the neutralization reaction.
This is then subtracted from the total number of moles acid to give the number of moles of acid that reacted with MCO3. From here, the molar mass of MCO3 and identity of M can be found. Hence the mass of CO2 produced is calculated as shown.
Answer: 44.37 degrees C
Explanation:
Use combined gas law: (P1)(V1)/T1=(P2)(V2)/T2
For most gas laws, you must convert to Kelvin:
K=deg C+273
K=25+273=298 K
Plug and chug:
(1.0 atm)(1.2 L)/(298 K)=(0.71 atm)(1.8 L)/(x)
Solve for x and get 317.37 K
Subtract 273 from this to convert to degrees Celsius. You will get 44.37 degrees Celsius.
If you want additional help in chemistry or another subject for FREE, check out growthinyouth.org
Answer:
Asexual reproduction
Explanation:
Cells are able to re produce themselves without other cells needed. If cells need others to make more then how would that work and plus we wouldn't have the theory of cells existing.