1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sasho [114]
1 year ago
8

The probability of meeting a random person who has the same birthday as you is365• whichis approximately 0.27%. What is the prob

ability that the 25th person you meet is the firstperson who has the same birthday as you?00.27%00.14%00.25%00.03%
Mathematics
1 answer:
Zepler [3.9K]1 year ago
6 0

Given:

The same birthday probability is

\begin{gathered} =\frac{1}{365} \\  \\ =0.27\% \end{gathered}

Find:-

Person who has the same birthday

Explanation-:

The probability of meeting a random person who has the same birthday is:

=\frac{1}{365}

Probability of meeting a random person who does not has same birthday as you

\begin{gathered} =1-\frac{1}{365} \\  \\ =\frac{365-1}{365} \\  \\ =\frac{364}{365} \end{gathered}

The required probability that the 25th person you meet is the first person who has the same birthday as

\begin{gathered} =\text{  Probability that the first 24 persons we meet did not have same birthday \rparen}\times(\text{ probability that the first 25 person we meet has same birthday\rparen} \\  \end{gathered}

Therefor,

\begin{gathered} P=(\frac{364}{365})^{24}\times\frac{1}{365} \\  \\ =(0.9972)^{24}\times0.27 \\  \\ =0.9362\times0.27 \\  \\ =0.25\% \end{gathered}

You might be interested in
It takes Evan 6 3/4 hours to mow 3 lawns. it takes him 2 1/3 hours to mow Mr. Smiths yard and 1 3/4 hours to mow Ms. Lee's yard.
Ratling [72]

Answer: 2\frac{2}{3}\ hours

Step-by-step explanation:

Given: The total time taken by Evan to mow the 3 lawns = 6\frac{3}{4}=\frac{27}{4}\ \text{hours}

Time taken by Evan to mow the first lawn =2\frac{1}{3}=\frac{7}{3}\ \text{hours}

Time taken by Evan to mow the second lawn =1\frac{3}{4}=\frac{7}{4}\ \text{hours}

Now,Time taken by Evan to mow the third lawn =\frac{27}{4}-\frac{7}{3}-\frac{7}{4}

⇒Time taken by Evan to mow the third lawn =\frac{81-28-21}{12}

⇒Time taken by Evan to mow the third lawn =\frac{32}{12}=\frac{8}{3}=2\frac{2}{3}\ hours

Hence, the time taken by Evan to mow the third lawn = 2\frac{2}{3}\ hours

7 0
3 years ago
Is table salt an Electrolyte?​
STatiana [176]

Answer:

v

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
A potter can make 24 vases in 8 days. If the potter works 6 hours each day, how long does it take to make one vase?
NikAS [45]
Answer: 2
Explaintion/
24/8 =3
6/3=2
7 0
2 years ago
Simplify each expression by combining like terms <br> 3x^-1 - 10x^-1
Dmitry_Shevchenko [17]

Answer:

-7/x

Step-by-step explanation:

first, you combine the terms together to get -7x^-1. you cant have negative exponents in the numerator so you move the x^-1 to the denominator. once it move its becomes positive then.

7 0
3 years ago
Other questions:
  • on a tour of an old gold mine, you find a gold nugget containing .82 ounces of gold. gold is worth $1566.80 per ounce. how much
    14·2 answers
  • Please help me on number 2
    10·1 answer
  • On a number line, suppose the coordinate of A is 0, and AR = 9. What are the possible coordinates of the midpoint of AR?
    5·1 answer
  • Find the explicit solution for:<br> dX/dt=(x-1)(2x-1), ln(2x-1/x-1)=t
    14·1 answer
  • If it is 3;50 and i have to leave at 4;45 how long do i have
    11·1 answer
  • No files just type it in please and thank you&lt;3
    7·1 answer
  • The quadrant that contains the point (-7,-16) is quadrant PLSS ANWAR NOW NEED HELP NOW
    12·1 answer
  • The sum of three consecutive numbers is 84. What is the largest of these numbers?
    10·1 answer
  • A dog won a race at the local fair by running 7 1/4 miles in exactly 2 hours. At this constant rate, how long does it take the s
    14·1 answer
  • Solve the following question​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!