1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
8

Solving equation P=k+m+n solve for k

Mathematics
2 answers:
nordsb [41]3 years ago
3 0
           P = k + m + n   Subtract m from both sides
     P - m = k + n          Subtract n from both sides
P - m - n = k                Switch the sides to make it easier to read
            k = P - m - n
vlabodo [156]3 years ago
3 0
Start with P=k+m+n
P - m = k + n
P - m -n = k or K = p - m - n

You might be interested in
What is the slope of the line perpendicular to a line that contains the points (-5,4) and (-2,4)
steposvetlana [31]

Answer:

the slope of the line is: 0

Step-by-step explanation:

4-4=0

-2-5= 3

7 0
3 years ago
A contractor had $3,285 to spend for doors and hammers. Doors cost $75 each. He bought the greatest number of doors that he coul
swat32

Answer:

4 hammers

Step-by-step explanation:

Please refer to the attached image for explanations

6 0
3 years ago
Find the derivative of <img src="https://tex.z-dn.net/?f=tan%5E%7B-1%7D%20x" id="TexFormula1" title="tan^{-1} x" alt="tan^{-1} x
sladkih [1.3K]

\huge{\color{magenta}{\fbox{\textsf{\textbf{Answer}}}}}

\frak {\huge{ \frac{1}{1 +  {x}^{2} } }}

Step-by-step explanation:

\sf let \: f(x) =  { \tan }^{ - 1} x \\  \\  \sf f(x + h) =  { \tan}^{ - 1} (x + h)

\sf f'(x) =  \frac{f(x+h)  - f(x) }{h}

\sf \implies \lim_{  h \to 0  } \frac{ { \tan }^{ - 1}(x + h) -  { \tan}^{ - 1}x  }{h}  \\  \\  \\  \sf  \implies  \lim_ {h \to 0}    \frac{  { \tan}^{ - 1} \frac{x + h - x}{1 + (x + h)x} }{h}

By using

\sf { \tan}^{ - 1} x -  { \tan}^{ - 1} y   = \\   \sf { \tan}^{ - 1}  \frac{x - y}{1 + xy} formula

\sf  \implies  \large \lim_{h \to0 }   \frac{  { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{h}  \\  \\  \\  \sf  \implies   \large{\lim_{h \to0}   } \frac{ { \tan}^{ - 1}  \frac{h}{1 + hx +  {x}^{2} } }{ \frac{h}{1 + hx  +  {x}^{2} }  \times (1 + hx +  {x}^{2} )}  \\  \\  \\  \sf  \implies \large  \lim_{h \to0} \frac{ { \tan}^{ - 1} \frac{h}{1 + hx +  {x}^{2} }  }{ \frac{h}{1 + hx +  {x}^{2} } }  +  \lim_{h \to0} \frac{1}{1 + hx +  {x}^{2} }

<u>Now</u><u> </u><u>putting</u><u> </u><u>the</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>h</u><u> </u><u>=</u><u> </u><u>0</u>

<u>\sf  \large  \implies 0 +  \frac{1}{1 + 0 +  {x}^{2} }  \\  \\  \\  \purple{ \boxed  { \implies  \frac{1}{1 +  {x}^{2} } }}</u>

6 0
2 years ago
In the table below, y varies inversely as x. What is the missing value?
Minchanka [31]

Answer:

<h2>The value of y is <u>0.5</u>, so the answer is <u>C</u>.</h2>

Step-by-step explanation:

Find first the constant of variation.

Given: x = 3, y = 4

Find: k = ?

Formula:

y =  \frac{k}{x}

Solution:

y =  \frac{k}{x}  \\ 4 =  \frac{k}{3}  \\ 12 = k

Then, find the value of y in the third box.

Given: x = 24, k = 12

Find: y = ?

Formula:

y =  \frac{k}{x}

Solution:

y =  \frac{k}{x}  \\ y =   \frac{12}{24} \\ y =  \frac{1}{2} \\\boxed{y = 0.5}

6 0
3 years ago
How many one degree ngles are in a 70 degree angle
velikii [3]

Answer:

um, seventy one-degree-angles would be in a seventy-degree angle...

Step-by-step explanation:

Are you being serious about this question?

I assume the answer to be pretty self-explanatory.

8 0
3 years ago
Other questions:
  • 24 red marbles is 40% of ____ marbles
    12·2 answers
  • Please answer the question from the attachment.
    6·1 answer
  • A 3-gallon jug of water costs $21.12. What is the price per cup?
    8·1 answer
  • {(-1, 2), (0, 2), (5, 2)} is a function.<br> O True<br> O False
    7·2 answers
  • Round 4x+4\leq9x+84x+4≤9x+8
    13·1 answer
  • A cooler has 12 apple juices and 15 grape juices. 9 of the apple juices are sugar free and 5 of the grape juices are sugar free.
    15·2 answers
  • Determine whether the improper integral converges or diverges, and find the value of each that converges.
    14·1 answer
  • 1.Solve by factorization method: x+1/x=11 1/11 2.Comment on the nature of roots for 4x^2-5=2(〖x+1)〗^2-7 plz, help...
    7·1 answer
  • Factor the expression by finding the GCF.
    11·1 answer
  • The Playground Center purchases swing sets for $385.99. It sells the swing sets for $598.99. What is the percent of markup? Roun
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!