Answer: One formula unit of NaCl consists of one cation, whose chemical symbol is
and one anion whose chemical symbol is 
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
The cation is formed by the metal sodium which forms
and the anion is formed by non metal chlorine which forms
.
For a formula unit of sodium chloride, the charges have to be balanced , thus the valencies of ions are exchanged and the neutral compound result. Thus
and
combine to form neutral 
A planetary surface is where the solid (or liquid) material of the outer crust on certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs).[1][2][3] The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus of a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.
In differentiated bodies, the surface is where the crust meets the planetary boundary layer. Anything below this is regarded as being sub-surface or sub-marine. Most bodies more massive than super-Earths, including stars and gas giants, as well as smaller gas dwarfs, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.
Planetary surfaces and surface life are of particular interest to humans as it is the primary habitat of the species, which has evolved to move over land and breathe air. Human space exploration and space colonization therefore focuses heavily on them. Humans have only directly explored the surface of Earth and the Moon. The vast distances and complexities of space makes direct exploration of even near-Earth objects dangerous and expensive. As such, all other exploration has been indirect via space probes.
Indirect observations by flyby or orbit currently provide insufficient information to confirm the composition and properties of planetary surfaces. Much of what is known is from the use of techniques such as astronomical spectroscopy and sample return. Lander spacecraft have explored the surfaces of planets Mars and Venus. Mars is the only other planet to have had its surface explored by a mobile surface probe (rover). Titan is the only non-planetary object of planetary mass to have been explored by lander. Landers have explored several smaller bodies including 433 Eros (2001), 25143 Itokawa (2005), Tempel 1 (2005), 67P/Churyumov–Gerasimenko (2014), 162173 Ryugu (2018) and 101955 Bennu (2020). Surface samples have been collected from the Moon (returned 1969), 25143 Itokawa (returned 2010), 162173 Ryugu and 101955 Bennu.
Answer:

Explanation:
Hello,
In this case, since the undergoing chemical reaction is:

The corresponding moles of carbon dioxide occupying 40.0 mL (0.0400 L) are computed by using the ideal gas equation at 273.15 K and 1.00 atm (STP) as follows:

Then, since the mole ratio between carbon dioxide and calcium carbonate is 1:1 and the molar mass of the reactant is 100 g/mol, the mass that yields such volume turns out:

Regards.
Answer:
79.8g/dm³
Explanation:
As you can see, the solution in the problem contains 0.5 moles of copper sulfate per dm³. To solve this question we must convert these moles to grams using its molar mass (Molar mass CuSO4 = 159.609g/mol) as follows:
0.5mol CuSO4/dm³ * (159.609g/mol) =
<h3>79.8g/dm³</h3>