Explanation:
<h2><em>Explain</em></h2><h2><em>Explainexplain</em></h2><h2><em>Explainexplainexplain</em></h2><h2><em>Explainexplainexplainexplain</em></h2><h2><em>Explainexplainexplainexplainexplain</em></h2>
<span>The smallest unit of a compound is called a molecule. The correct option among all the options that are given in the question is the second option or the penultimate option or option "B". The other choices are incorrrect and can be negated. I hope that this is the answer that has actually come to your desired help.</span>
<u>Answer:</u> The mass of phosphorus that is present for given amount of calcium is 28.53 g.
<u>Explanation:</u>
We are given:
Mass of calcium = 50 grams
The chemical formula of calcium phosphate is 
Molar mass of calcium = 40 g/mol
Molar mass of phosphorus = 31 g/mol
In 1 mole of calcium phosphate, 120 grams of calcium is combining with 62 grams of phosphorus.
So, 50 grams of calcium will combine with =
of phosphorus.
Hence, the mass of phosphorus that is present for given amount of calcium is 28.53 g.
There are 18 protons and electrons and 22 neutrons in the atom
The empirical formula is Ca₃P₂O₈.
<em>Assume</em> that you have 100 g of the compound.
Then you have 38.76 g Ca, 19.97 g P, and 41.28 g O.
Now, we must convert these <em>masses to moles</em> and <em>find their ratio</em>s.
If the number in the ratio are not close to integers, you <em>multiply them by a numbe</em>r that makes them close to integers.
From here on, I like to summarize the calculations in a table.
<u>Element</u> <u>Mass/g</u> <u> Moles </u> <u> </u><u>Ratio </u> <u> ×2 </u> <u>Integers</u>
Ca 38.76 0.967 07 1.4998 2.9995 3
P 19.97 0.644 82 1 2 2
O 41.28 2.580 0 4.0011 8.0023 8
The empirical formula is Ca₃P₂O₈.