Answer:

Explanation:
Hello,
In this case, given the 0.0990 moles of the salt are soluble in 1.00 L of water only, we can infer that the molar solubility is 0.099 M. Next, since the dissociation of the salt is:

The concentrations of the A and B ions in the solution are:
![[A]=0.099 \frac{molAB_3}{L}*\frac{1molA}{1molAB_3} =0.0099M](https://tex.z-dn.net/?f=%5BA%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B1molA%7D%7B1molAB_3%7D%20%20%3D0.0099M)
![[B]=0.099 \frac{molAB_3}{L}*\frac{3molB}{1molAB_3} =0.000.297M](https://tex.z-dn.net/?f=%5BB%5D%3D0.099%20%5Cfrac%7BmolAB_3%7D%7BL%7D%2A%5Cfrac%7B3molB%7D%7B1molAB_3%7D%20%20%3D0.000.297M)
Then, as the solubility product is defined as:
![Ksp=[A][B]^3](https://tex.z-dn.net/?f=Ksp%3D%5BA%5D%5BB%5D%5E3)
Due to the given dissociation, it turns out:
![Ksp=[0.099M][0.297M]^3\\\\Ksp=2.59x10^{-3}](https://tex.z-dn.net/?f=Ksp%3D%5B0.099M%5D%5B0.297M%5D%5E3%5C%5C%5C%5CKsp%3D2.59x10%5E%7B-3%7D)
Regards.
As given that some volume of water has been dispensed say "x mL"
The initial weight of bottle =8.4376 g
The final weight of bottle + water =28.5845 g
So weight of water transferred = 28.5845 g - 8.4376 g = 20.1469 g
Now there is a relation between density, mass and volume
density = mass / volume
Therefore
Volume = mass / density
So volume of water dispensed = mass dispensed / density =20.1469 g / 0.9967867 g/ml.
Volume of water = 20.2118467 mL
I would say the answer is liquids
Answer:
conductors of electricity when in liquid or aqueous state
high melting point
soluble in water
Explanation:
An ionic substance is any substance that is composed of two ions of opposite charge.
In the solid state, ionic substances do not conduct electricity because the ions are trapped inside the crystal. When in liquid state or in aqueous solution, these ions are now free and the solution becomes an electrolyte.
All ionic substances have a very high melting point and dissolve in water easily.