Answer:
It will take 28.5 minutes
Explanation:
<u>Step 1: </u>Data given
Mass of Cu = 4.50 grams
8.00 A of current are used
Molar mass of Cu = 63.5 g/mol
Step 2: Calculate time needed
Cu2+ →Electricity → Cu
we notice a flow of 2 electrons ⇒ This means the Faraday constant = 2F
Since Molar mass of Cu is 63.5 g/mol
63.5 grams of Cu is deposited by 2*96500 C
4.50 grams of Cu ((2*96500)/63.5) * 4.50 = 13677.17 C
Q = It
13677.17 = 8t*60 seconds
t = 28.5 minutes
Student B because it requires a hypothesis
Answer: The steepness of a ramp affects it by making it easier or harder.
Explanation: It's a bit situational. If you were going up a steep ramp with a heavy load, it will increase the work necessary, whereas if you were going down a ramp, it would decrease the work necessary. If you need this simply put, think about biking up and down a hill. It would be easier going down than up.
Answer:
N2
Explanation:
Rate of effusion is defined by Graham's Law:
(Rate 1/Rate 2) = (sqrt (M2)/ sqrt (M1))
(Where M is the molar mass of each substance. )
Molar Mass of oxygen, O2, is 32 (M1).
Rate of effusion of O2 to an unknown gas is .935(Rate 1).
Rate 2 is unknown so put 1.
Solve for x (M2).
.935/1 = sqrt x/ sqrt32
.935 x sqrt 32 = sqrt x
5.29 = sq rt x
5.29^2 = 27.975 = 28
N2 has a molar mass of 28 so it is the correct gas.
Answer:
A
Explanation:
Quaternary structure of proteins is composed of two or more polypeptide chains. Insulin has two; one alpha and one beta chain. The two chains are joined together by disulfide bonds at two points (at cysteines). Other examples of quaternary proteins structures are DNA polymerase and hemoglobin.