1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
11 months ago
11

What is the first step necessary for initiating the visual transduction cascade in rods?.

Engineering
1 answer:
irinina [24]11 months ago
4 0

'Capturing a photon by<em> isomerization and rhodopsin </em>of retinal' is the first step necessary for initiating the visual transduction cascade in rods.

Visual transduction refers to the process in the eye where absorption of light in the 'retina' is translated into electrical signals that then reach the brain. It is correct to state that visual transduction is the photochemical reaction that takes place when light or photon is converted to an electric signal in the retina. The visual pigment in the rods, called rhodopsin, is a membrane protein placed in the outer segments of the rods.

When initiating the visual transduction cascade in rods the first vital step is to capture a photon by<em> isomerization and rhodopsin</em> of retinal'.

You can leran more about visual transduction at

brainly.com/question/13798113

#SPJ4

You might be interested in
python Write a program that asks a user to type in two strings and that prints •the characters that occur in both strings. •the
Yuliya22 [10]

Answer:

see explanation

Explanation:

#we first get the elements as inputs

x = input("enter string A :")

y = input("enter string B :")

#then we make independent sets with each

x = set(x)

y = set(y)

#then the intersection of the two sets

intersection = set.intersection(x,y)

#another set for the alphabet

#we use set.difference to get the elements present in x and not in y, and

#viceversa, finally we get the difference between the alphabet and the #intersection of the elements in our strings

z = set('abcdefghijklmnopqrstuvwxyz')

print('\nrepeated :\n',intersection)

print('differences :\n',' Items in A and not B\n',

set.difference(x,y),'\nItems in B and not A\n',

set.difference(y,x))

print('\nItems in neither :\n',set.difference(z,intersection))

8 0
3 years ago
A(n) ____________________ measures the resistance to current flow in a circuit.
yulyashka [42]

Answer: OHMMETER & MEGOHMMETER:

Explanation: The ohmmeter measures circuit resistance; the megohmmeter measures the high resistance of insulation. A meter used to measure electric current. It is connected as part of a circuit.

6 0
2 years ago
Six housing subdivisions within a city area are target for emergency service by a centralized fire station. Where should the new
Marina86 [1]

Answer:

Explanation:

Since there are six points, the minimum distance from all points would be the centroid of polygon formed by A,B,C,D,E,F

To find the coordinates of centroid of a polygon we use the following formula. Let A be area of the polygon.

C_{x}=\frac{1}{6A} sum(({x_{i} +x_{i+1})(x_{i}y_{i+1}-x_{i+1}y_{i}))     where i=1 to N-1 and N=6

C_{y}=\frac{1}{6A} sum(({y_{i} +y_{i+1})(x_{i}y_{i+1}-x_{i+1}y_{i}))

A area of the polygon can be found by the following formulaA=\frac{1}{2} sum(x_{i} y_{i+1} -x_{i+1} y_{i}) where i=1 to N-1

A=\frac{1}{2}[ (x_{1}  y_{2} -x_{2}  y_{1})+ (x_{2}  y_{3} -x_{3}  y_{2})+(x_{3}  y_{4} -x_{4}  y_{3})+(x_{4}  y_{5} -x_{5}  y_{4})+(x_{5}  y_{6} -x_{6}  y_{5})]

A=0.5[(20×25 -25×15) +(25×32 -13×25)+(13×21 -4×32)+(4×8 -18×21)+(18×14 -25×8)

A=225.5 miles²

Now putting the value of area in Cx and Cy

C_{x} =\frac{1}{6A}[ [(x_{1}+x_{2})(x_{1}  y_{2} -x_{2}  y_{1})]+ [(x_{2}+x_{3})(x_{2}  y_{3} -x_{3}  y_{2})]+[(x_{3}+x_{4})(x_{3}  y_{4} -x_{4}  y_{3})]+[(x_{4}+x_{5})(x_{4}  y_{5} -x_{5}  y_{4})]+[(x_{5}+x_{6})(x_{5}  y_{6} -x_{6}  y_{5})]]

putting the values of x's and y's you will get

C_{x} =15.36

For Cy

C_{y} =\frac{1}{6A}[ [(y_{1}+y_{2})(x_{1}  y_{2} -x_{2}  y_{1})]+ [(y_{2}+y_{3})(x_{2}  y_{3} -x_{3}  y_{2})]+[(y_{3}+y_{4})(x_{3}  y_{4} -x_{4}  y_{3})]+[(y_{4}+y_{5})(x_{4}  y_{5} -x_{5}  y_{4})]+[(y_{5}+y_{6})(x_{5}  y_{6} -x_{6}  y_{5})]]

putting the values of x's and y's you will get

C_{y} =22.55

So coordinates for the fire station should be (15.36,22.55)

5 0
2 years ago
If we have silicon at 300K with 10 microns of p-type doping of 4.48*10^18/cc and 10 microns of n-type doping at 1000 times less
liq [111]

Answer:

The resistance is 24.9 Ω

Explanation:

The resistivity is equal to:

R=\frac{1}{N_{o}*u*V } =\frac{1}{4.48x10^{15}*1500*106x10^{-19}  } =0.93ohm*cm

The area is:

A = 60 * 60 = 3600 um² = 0.36x10⁻⁴cm²

w=\sqrt{\frac{2E(V_{o}-V) }{p}(\frac{1}{N_{A} }+\frac{1}{N_{D} })

If NA is greater, then, the term 1/NA can be neglected, thus the equation:

w=\sqrt{\frac{2E(V_{o}-V) }{p}(\frac{1}{N_{D} })

Where

V = 0.44 V

E = 11.68*8.85x10¹⁴ f/cm

V_{o} =\frac{KT}{p} ln(\frac{N_{A}*N_{D}}{n_{i}^{2}  } , if n_{i}=1.5x10^{10}cm^{-3}  \\V_{o}=0.02585ln(\frac{4.48x10^{18}*4.48x10^{15}  }{(1.5x10^{10})^{2}  } )=0.83V

w=\sqrt{\frac{2*11.68*8.85x10^{-14}*(0.83-0.44) }{1.6x10^{-19}*4.48x10^{15}  } } =3.35x10^{-5} cm=0.335um

The length is:

L = 10 - 0.335 = 9.665 um

The resistance is:

Re=\frac{pL}{A} =\frac{0.93*9.665x10^{-4} }{0.36x10^{-4} } =24.9ohm

7 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 0.6 W of power. The resistor is 1.5 cm long, and has a diameter of
Burka [1]

Answer:

a. 51.84Kj

b. 2808.99 W/m^2

c. 11.75%

Explanation:

Amount of heat this resistor dissipates during a 24-hour period

= amount of power dissipated * time

= 0.6 * 24 = 14.4 Watt hour

(Note 3.6Watt hour = 1Kj )

=14.4*3.6 = 51.84Kj

Heat flux = amount of power dissipated/ surface area

surface area = area of the two circular end  + area of the curve surface

=2*\frac{\pi D^{2} }{4} + \pi DL\\=2*\frac{\pi *(\frac{0.4}{100} )^{2} }{4} + \pi *\frac{0.4}{100} *\frac{1.5}{100}

= 2.136 *10^-4 m^{2}

Heat flux =\frac{0.6}{2.136 * 10^{-4} } = 2808.99 W/m^{2}

fraction of heat dissipated from the top and bottom surface

=\frac{\frac{2*\pi D^{2} }{4} }{\frac{2*\pi D^{2}}{4} + \pi DL } \\\\=\\\frac{\frac{2*\pi *(\frac{0.4}{100} )^{2} }{4} }{\frac{2*\pi *(\frac{0.4}{100}  )^{2} }{4} +\pi *\frac{0.4}{100} *\frac{1.5}{100} } \\\\=\frac{2.51*10^{-5} }{2.136*10^{-4} } \\\\\= 0.1175

=11.75%

8 0
3 years ago
Read 2 more answers
Other questions:
  • An air compressor of mass 120 kg is mounted on an elastic foundation. It has been observed that, when a harmonic force of amplit
    13·1 answer
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • Line layout is also called ......​
    5·1 answer
  • You are considering building a residential wind power system to produce 6,000 kWh of electricity each year. The installed cost o
    15·1 answer
  • Fuel Combustion and CO2 Sequestration [2016 Midterm Problem] Long-term storage of carbon dioxide in underground aquifers or old
    5·1 answer
  • Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
    11·1 answer
  • Yooo. does anyone have tin foil and tape mask that they can take a picture of and send it ?
    5·1 answer
  • Which type of load generates a magnetic field?
    12·1 answer
  • Why is it important to follow the engineering design process before building a prototype
    13·1 answer
  • In what ways did electrical switches have to change to progress from the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!