1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
3 years ago
15

With reference to the NSPE Code of Ethics, which one of the following statements is true regarding the ethical obligations of th

e engineers involved in the VW Emissions Cheating Scandal.
a. The VW engineers involved conducted themselves honorably, responsibly, ethically, and lawfully so as to enhance the honor, reputation, and usefulness of the profession.
b. As faithful agents and trustees of Volkswagen the engineers involved could not ethically report the emissions cheating violations to public authorities.
c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.
d. The VW engineers involved were not ethically obligated to report to their supervisors and to upper management the emissions cheating violations being implemented in the control system hardware and software.
Engineering
1 answer:
34kurt3 years ago
4 0

Answer: c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.

Explanation: The National Society of professional Engineers, NSPE define the code of ethics which must guide engineers in their duty. These codes act as principles of personal conduct, towards the public and their employers.  

One of the areas covered by these codes is overriding importance of the safety and health of the public to any other factor. In addition, engineers are to avoid deception and maintain the reputation of their profession. These cannot be sacrificed for the financial gain of their employers or explained away by saying they are following the direction of their employers. While they have certain responsibilities to their employers, the health welfare and safety of the public is more important.  

You might be interested in
The cult of personality that surrounded Joseph Stalin in the Soviet Union led soviet citizens to believe that there was undisput
evablogger [386]

Answer:

The cult of personality that surrounded Joseph Stalin in the Soviet Union led soviet citizens to believe that there was undisputed support for Stalin both among the government and the common people. In turn, this fueled self-censorship and made political change harder. This cult of personality was achieved through propaganda and censorship, as the Communist Party had control of all mass media. This desire to make himself a "god-like" figure was also an attempt to increase acceptance of communism among the people and to boost morale.

Explanation:

7 0
2 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Information or signals entered into a computer system is
Virty [35]

<em>Logs.</em>

<em>Like data logs. Sometimes people make these logs to keep tabs on other people or to get important information put down somewhere that way it is saved and can be looked back upon later. Anytime someone makes an action on the computer, it makes a TMP file representing a log of what you want it to do before the computer quickly get's rid of the file.</em>

<em>-Ɽ3₮Ɽ0 Ⱬ3Ɽ0</em>

<em />

8 0
2 years ago
The acceleration of a particle is given by a = 2t − 10, where a is in meters per second squared and t is in seconds. Determine t
tensa zangetsu [6.8K]

Answer

given,

a = 2 t - 10

velocity function

we know,

\dfrac{dv}{dt}=a

\dfrac{dv}{dt}=(2t-10)

integrating both side

\int dv =\int (2t -10) dt

 v = t² - 10 t + C

at t = 0   v = 3

so, 3 = 0 - 0 + C

     C = 3

Velocity function is equal to v = t² - 10 t + 3

Again we know,

\dfrac{dx}{dt}=v

\dfrac{dx}{dt}=(t^2-10t + 3)

integrating both side

\int dx =\int (t^2-10t + 3)dt

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t + C

now, at t= 0 s = -4

-4 = \dfrac{0^3}{3}- 10\dfrac{0^2}{2} + 0 + C

C = -4

So,

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

Position function is equal to x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

8 0
3 years ago
WIL MARK U AS BRAINLIEST HELP PLZ
ss7ja [257]

Answer:

The 1st one:Your natural ability

4 0
3 years ago
Other questions:
  • What are the basic types of heat exchangers?
    9·1 answer
  • Why is low voltage advantageous in arc welding?
    5·1 answer
  • How do I cancel my subscription
    12·2 answers
  • A Water Amusement Park parking lot charges $24.00 minimum fee to park for up to 8 hours. The meter charges an additional $3.25 p
    5·2 answers
  • // This program accepts data about 100 books and// determines a price for each.// The price is 10 cents per page for the// first
    12·1 answer
  • I will put other link in comments
    12·1 answer
  • Give three examples of how engineering has made human life better in your opinion.
    13·1 answer
  • The structure of PF3(C6H5)2 is trigonal bipyramidal, with one equatorial and two axial F atoms which interchange positions when
    15·1 answer
  • What is the first step of the engineering design process?
    9·2 answers
  • Can you help me with this
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!