Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib
Using the formula F = m*a. where F is the force, m is the mass and a is the acceleration you can use it for each. As long as there are no other forces towards the body in both cases :
F = m*a
F = 50*3
F = 150 N
Answer:
F = 3.20 N
Explanation:
Given:
Work done by child = 80.2 j
Distance that the car moves = 25.0 m
We need to find the force acting on the car.
Solution:
Using work done formula as.

Where:
W = Work done by any object.
F = Force (push or pull)
d = distance that the object moves.
Substitute
in work done formula.


F = 3.20 N
Therefore, force acting on the car F = 3.20 N
Explanation :
It is given that,
In the given figure all the three resistors are in series.
Current flowing in the circuit, 
Voltage, 
We know that in series circuit the current flowing in all resistors is same.
Using Ohm's law, we get:



Hence, this is the required solution.