Answer:
Option C, The total momentum of the fragments is equal to the original momentum of the firecracker.
Explanation:
Kinetic energy of cracker cannot remain constant before and after explosion. It is so because in the process of burning and bursting some amount of kinetic energy is lost in the form of light and heat energy. While the total mass before and after the explosion remains constant due to which the momentum is conserved before and after the explosion
Hence, option C is correct
Type into google: " water cycle" and this comes up.... put it in to your own words. This is very easy.
the cycle of processes by which water circulates between the earth's oceans, atmosphere, and land, involving precipitation as rain and snow, drainage in streams and rivers, and return to the atmosphere by evaporation and transpiration.
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
There is no scientific way to prove that it happened it’s like a hypothesis without being able to test the hypothesis
If its atomic number is 48, then it has 48 protons in the nucleus
of each atom. Any more mass than that is supplied by the neutrons
that are mixed in there with the protons.
If the mass is 167, and 48 of those are protons, then there are
(167 - 48) = 119 neutrons
in each nucleus.