1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
11

An elaborate pulley consists of four identical balls at the ends of spokes extending out from a rotating drum. A box is connecte

d to a light, thin rope wound around the rim of the drum. When it is released from rest, the box acquires a speed V after having fallen a distance d. Now the four balls are moved inward closer to the drum, and the box is again released from rest. After it has fallen a distance d, will its speed be equal to V, greater than V, or less than V? Show or explain why.
Physics
1 answer:
Klio2033 [76]3 years ago
3 0

Answer:

its speed will be less than V

Explanation:

When the ball falls a distance d, its final kinetic energy plus rotational kinetic energy of the drum equals its initial potential energy.

K = U

With its speed V at the end of d, we have

1/2mV² + 1/2Iω² = mgd where I = rotational inertia of drum and balls, ω = angular speed of drum and balls and m = mass of box

1/2mV² + 1/2Iω² = mgd

1/2mV² = mgd - 1/2Iω²

V² = [2(mgd - 1/2Iω²)/m]

V = √[2(mgd - 1/2Iω²)/m]

When the four balls are moved inward closer to the drum, their rotational inertia increases and also its angular speed which thus causes an increase in rotational kinetic energy. But, since the box still falls the same distance of d, its final kinetic energy plus rotational kinetic energy of the drum plus balls still equals its initial potential energy

K = U

I' = new rotational inertia of drum and balls, ω' = new angular speed of drum and balls

With its new speed is now V' at the end of d,

1/2mV'² + 1/2I'ω'² = mgd

1/2mV'² = mgd - 1/2I'ω'²

V² = [2(mgd - 1/2I'ω'²)/m]

V' = √[2(mgd - 1/2I'ω'²)/m]

Since I' and ω' increase, the rotational kinetic energy of the drum and balls (1/2I'ω'²) increases. Thus, the difference (mgd - 1/2I'ω'²) < (mgd - 1/2Iω²) which implies that the kinetic energy of the box decreases. Hence, since its kinetic energy decreases, its speed V' also decreases.

So,  V' < V

So, its speed will be less than V.

You might be interested in
a paper airplane gliding down towards the ground will experience the force of air resistance pushing up. the weight of the paper
Oduvanchick [21]

The net force acting on the airplane is 25N.

Forces acting on the paper airplane when it is in the air:

  • The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
  • Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
  • Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
  • Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.

Given.

Weight of the paper airplane, F1 = 16N

The force of air resistance, F2 = 9N

Net force = F1 + F2

Net force = 25N

Thus, the net force acting on the airplane is 25N.

Learn more about the net force here:

brainly.com/question/18109210

#SPJ1

3 0
1 year ago
A sky diver with a mass of 70kg jumps from an aircraft. The aerodynamic drag force acting on the sky diver is known to be Fd=kV^
xeze [42]

Answer:

v_{max}=52.38\frac{m}{s}

v_{100}=33.81

Explanation:

the maximum speed is reached when the drag force and the weight are at equilibrium, therefore:

\sum{F}=0=F_d-W

F_d=W

kv_{max}^2=m*g

v_{max}=\sqrt{\frac{m*g}{k}} =\sqrt{\frac{70*9.8}{0.25}}=52.38\frac{m}{s}

To calculate the velocity after 100 meters, we can no longer assume equilibrium, therefore:

\sum{F}=ma=W-F_d

ma=W-F_d

ma=mg-kv_{100}^2

a=g-\frac{kv_{100}^2}{m} (1)

consider the next equation of motion:

a = \frac{(v_{x}-v_0)^2}{2x}

If assuming initial velocity=0:

a = \frac{v_{100}^2}{2x} (2)

joining (1) and (2):

\frac{v_{100}^2}{2x}=g-\frac{kv_{100}^2}{m}

\frac{v_{100}^2}{2x}+\frac{kv_{100}^2}{m}=g

v_{100}^2(\frac{1}{2x}+\frac{k}{m})=g

v_{100}^2=\frac{g}{(\frac{1}{2x}+\frac{k}{m})}

v_{100}=\sqrt{\frac{g}{(\frac{1}{2x}+\frac{k}{m})}} (3)

v_{100}=\sqrt{\frac{9.8}{(\frac{1}{2*100}+\frac{0.25}{70})}}

v_{100}=\sqrt{\frac{9.8}{(\frac{1}{200}+\frac{1}{280})}}

v_{100}=\sqrt{\frac{9.8}{(\frac{3}{350})}}

v_{100}=\sqrt{1,143.3}

v_{100}=33.81

To plot velocity as a function of distance, just plot equation (3).

To plot velocity as a function of time, you have to consider the next equation of motion:

v = v_0 +at

as stated before, the initial velocity is 0:

v =at (4)

joining (1) and (4) and reducing you will get:

\frac{kt}{m}v^2+v-gt=0

solving for v:

v=\frac{ \sqrt{1+\frac{4gk}{m}t^2}-1}{\frac{2kt}{m} }

Plots:

5 0
3 years ago
If a frictional force of 4 N is acting against a push of 53 N and the box that is being pushed is 4 kg, what is its acceleration
kifflom [539]

Answer:

gggggggggggg

Explanation:

3 0
3 years ago
An object that gives off electromagnetic waves based on its temperature
My name is Ann [436]

Answer:

B) Blackbody radiation

MARK THIS AS BRAINLIEST PLEAWESSS :)

3 0
3 years ago
Can someone help me with this physics question? I don't know which answer is correct.
san4es73 [151]

3. Distance is a quantity that is always a vector.

B.

5 0
2 years ago
Other questions:
  • The Kinect energy of a book on a shelf is equal to the work done to lift the book to the shelf
    14·2 answers
  • What happens when you break a magnet in half
    12·2 answers
  • A string under a tension of 36 N is used to whirl a rock in a horizontal circle of radius 3.6 m at a speed of 16.12 m/s. The str
    15·1 answer
  • The ability of atoms to attract electrons from surrounding atoms is called
    11·2 answers
  • Define any two characteristics of sound​
    12·1 answer
  • A driver in a 2290-kg car car traveling at 42.7 m/s slams on the brakes and skids to a stop. If the coefficient of friction betw
    9·1 answer
  • An experiment is performed on an unknown material and produces the given heat curve. The temperature of the material is shown as
    7·1 answer
  • Which planet do most known extrasolar planets most resemble?
    7·2 answers
  • Help me i have little time left i will give brainliest
    7·1 answer
  • After rubbing a balloon on your shirt, your hair sticks up when the balloon is near your head. Explain how tiny particles on you
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!