Answer:

Step-by-step explanation:
We will need to solve the inequality:
–3x – 4 < 2
Before starting we need to understand 1 rule of inequalities. That is:
We change the inequality sign whenever we multiply or divide by a negative number. That means
< changes to >
and
≥ change to ≤
and vice versa...
Now, let's go ahead and solve the inequality:

"x" is the set of all values that is greater than "-2". So that's the answer.
x > -2
BD = 46
Explanation:
BC = CD and AC is used for both triangles so AD MUST = AB.
If AB = 23, then AD = 23.
BD = AB + AB
BD = 23 + 23
BD = 46
Hey there!
(6^3 * 2^6) / 2^3
= (6 * 6 * 6 * 2 * 2 * 2 * 2 * 2 * 2) / 2 * 2 * 2
= (36 * 6 * 4 * 4 * 4) / 4 * 2
= (216 * 16 * 4) / 8
= 3,456 * 4 / 8
= 13,824 / 8
= 1,728
Looking for something that gives you the result of: 1,728
Option A.
12^3
= 12 * 12 * 12
= 144 * 12
= 1,728
Option A. is. possible answer
Option B.
6^3
= 6 * 6 * 6
= 36 * 6
= 216
216 ≠ 1,728
Option B. is incorrect
Option C.
12^6
= 12 * 12 * 12 * 12 * 12 * 12
= 144 * 144 * 144
= 20,736 * 144
= 2,985,984
2,985,984 ≠ 1,728
Option C. is also incorrect
Option D.
2^6 * 2^3
= 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
= 4 * 4 * 4 * 4 * 2
= 16 * 16 * 2
= 256 * 2
= 512
512 ≠ 1,728
Option D. is also incorrect
Option E.
2^3 * 3^3
= 2 * 2 * 2 * 3 * 3 * 3
= 4 * 2 * 9 * 3
= 8 * 27
= 216
216 ≠ 1,728
Option E. is also incorrect.
Therefore, the answer should be:
Option A. 12^3
Good luck on your assignment & enjoy your day!
~Amphitrite1040:)
Answer:
The selections are dependent.
Yes, they can be treated as independent (less than 5% of the population).
Step-by-step explanation:
Since the selections are made without replacement, each selection affects the outcome of the next selection and, therefore, the selections are dependent.
Although they are dependent, the selections can be treated as independent if the sample size is no more than 5% of the total population. In this case, the sample size is 1235 adults out of a population of 15,958,866 adults. The percentage represented by the sample is:

Thus the selections can be treated as independent for the purposes of calculations.