Answer: range= 26, variance= 80 and standard deviation= 8.94
Step-by-step explanation:
Range = highest - lowest
Range = 146 - 120
Range= 26
Let m be mean
M=mean=sum/n
Mean=(120+134+146+127+138+133) / 6
M=798/6
M=133
The standard deviation sample formula:
S.D = sqrt( Summation of |x-m|^2 / n-1)
Let start finding:
|x-m|^2
For 1st: |120-133|^2=169
For 2nd: |134-133|^2=1
For 3rd: |146-133|^2=169
For 4th: |127-133|^2=36
For 5th: |138-133|^2=25
For 6th: |133-133|^2=0
Summation of |x-m|^2 = 400
The standard deviation formula is :
S.D = sqrt( Summation of |x-m|^2 / n-1)
S.D= sqrt(400 / 5)
S.D=sqrt(80)
S.D= 8.94
Variance = (Summation of |x-m|^2 / n-1)
Variance= 400/5
Variance= 80
Answer:
3xy² - 14y²
Step-by-step explanation:
I hope that this is the problem
- x²y + [ - (x²y - 2xy² + y²) + (xy² - 3y² + x²y)] - (10y² - x²y)
= - x²y + [ - x²y + 2xy² - y² + xy² - 3y² + x²y] - 10y² + x²y
Now combine like terms in the [ ].
= - x²y + [ -x²y + x²y + 2xy² + xy² - y² - 3y² ] - 10y² + x²y
= - x²y + [ 0 + 3xy² - 4y²] - 10y² + x²y
= - x²y + 3xy² - 4y² -10y² + x²y Now combine like terms
= (-x²y + x²y) + 3xy² + (-4y² - 10y²)
= 0 + 3xy² - 14y²
= 3xy² - 14y² or y²(3x - 14)
I will help you but I have a question